heureka

avatar
Nombre de usuarioheureka
Puntuación26367
Membership
Stats
Preguntas 17
Respuestas 5678

 #3
avatar+26367 
+1

determining the sum of this arithmetic series?

5 + 8 + 11 + ... + 53

 

arithmetic series:

\(\begin{array}{lrrrrrrrrrrrrrrrrr} & {\color{red}d_0 = 5} && 8 && 11 && 14 && 17 && \cdots && 53 \\ \text{1. Difference } && {\color{red}d_1 = 3} && 3 && 3 && 3 && \cdots && 3 \\ \end{array}\)

 

Formula:

\(\begin{array}{|rcl|} \hline a_n &=& \binom{n-1}{0}\cdot {\color{red}d_0 } + \binom{n-1}{1}\cdot {\color{red}d_1 } \\ s &=& \binom{n}{1}\cdot {\color{red}d_0 } + \binom{n}{2}\cdot {\color{red}d_1 } \\ \hline \end{array}\)

 

n = ?

\(\begin{array}{|rcl|} \hline a_n &=& \binom{n-1}{0}\cdot {\color{red}d_0 } + \binom{n-1}{1}\cdot {\color{red}d_1 } \quad & | \quad a_n = 53 \quad {\color{red}d_0 } = 5 \quad {\color{red}d_1 } = 3 \\\\ 53 &=& \binom{n-1}{0}\cdot {\color{red}5 } + \binom{n-1}{1}\cdot {\color{red}3 } \\ 53 &=& 5+(n-1)\cdot 3 \\ 53 &=& 2 +3n \quad & | \quad -2\\ 51 &=& 3n \quad & | \quad :3 \\ 17 &=& n \\ \mathbf{n} &\mathbf{=}& \mathbf{17} \\ \hline \end{array} \)

 

sum (s) = ?

\(\begin{array}{|rcl|} \hline s &=& \binom{n}{1}\cdot {\color{red}d_0 } + \binom{n}{2}\cdot {\color{red}d_1 } \quad & | \quad n = 17 \quad {\color{red}d_0 } = 5 \quad {\color{red}d_1 } = 3 \\\\ s &=& \binom{17}{1}\cdot {\color{red}5 } + \binom{17}{2}\cdot {\color{red}3 } \\ s &=& 17\cdot 5 + \frac{17}{2} \cdot \frac{16}{1}\cdot 3 \\ s &=& 17\cdot \left(5+\frac{16}{2}\cdot 3 \right) \\ s &=& 17\cdot(5+ 24) \\ s &=& 17\cdot 29 \\ \mathbf{s} &\mathbf{=}& \mathbf{493} \\ \hline \end{array}\)

 

The sum is 493

 

laugh

1 nov 2017
 #2
avatar+26367 
+1

The system of equations \[\frac{3xy}{x + y} = 5, \quad \frac{2xz}{x + z} = 3, \quad \frac{yz}{y + z} = 4\]

has one ordered triple solution $(x,y,z)$.

What is the value of $z$ in this solution? 

 

\(\begin{array}{|rcll|} \hline \dfrac{3xy}{x + y} = 5, \quad \dfrac{2xz}{x + z} = 3, \quad \dfrac{yz}{y + z} = 4 \\ z=\ ? \\ \hline \end{array}\)

 

\(\begin{array}{|lrcll|} \hline & \dfrac{3xy}{x + y} &=& 5 \\\\ & \dfrac{3}{5} &=& \dfrac{x+y}{xy} \\\\ \mathbf{(1)} & \mathbf{\dfrac{3}{5}} &\mathbf{=}& \mathbf{\dfrac{1}{y}+\dfrac{1}{x}} \\\\ \hline & \dfrac{2xz}{x + z} &=& 3 \\\\ & \dfrac{2}{3} &=& \dfrac{x+z}{xz} \\\\ \mathbf{(2)} & \mathbf{ \dfrac{2}{3}} &\mathbf{=}& \mathbf{\dfrac{1}{z}+\dfrac{1}{x}} \\\\ \hline & \dfrac{yz}{y + z} &=& 4 \\ & \dfrac{1}{4} &=& \dfrac{y+z}{yz} \\\\ \mathbf{(3)} & \mathbf{\dfrac{1}{4}} &\mathbf{=}& \mathbf{\dfrac{1}{z}+\dfrac{1}{y}} \\ \hline \end{array}\)

 

z = ?

\(\begin{array}{|lrcll|} \hline (2)+(3)-(1): & \mathbf{ \dfrac{2}{3}}+\mathbf{\dfrac{1}{4}} - \mathbf{\dfrac{3}{5}} &=& \left( \mathbf{\dfrac{1}{z}+\dfrac{1}{x}} \right) + \left( \mathbf{\dfrac{1}{z}+\dfrac{1}{y}} \right) - \left( \mathbf{\dfrac{1}{y}+\dfrac{1}{x}} \right) \\\\ & \dfrac{2}{3} +\dfrac{1}{4} - \dfrac{3}{5} &=& \dfrac{2}{z} \\\\ & \dfrac{2}{z} &=& \dfrac{2}{3} +\dfrac{1}{4} - \dfrac{3}{5} \\\\ & \dfrac{2}{z} &=& \dfrac{2\cdot 20+15-3\cdot 12}{60} \\\\ & \dfrac{1}{z} &=& \dfrac{40+15-36}{120} \\\\ & \dfrac{1}{z} &=& \dfrac{19}{120} \\\\ & \mathbf{z} &\mathbf{=}& \mathbf{\dfrac{120}{19}} \\ \hline \end{array}\)

 

x = ?

\(\begin{array}{|lrcll|} \hline (1)-(3)+(2): & \mathbf{\dfrac{3}{5}}-\mathbf{\dfrac{1}{4}}+\mathbf{ \dfrac{2}{3}} &=& \left( \mathbf{\dfrac{1}{y}+\dfrac{1}{x}} \right) - \left( \mathbf{\dfrac{1}{z}+\dfrac{1}{y}} \right) + \left( \mathbf{\dfrac{1}{z}+\dfrac{1}{x}} \right) \\\\ & \dfrac{3}{5} -\dfrac{1}{4} + \dfrac{2}{3} &=& \dfrac{2}{x} \\\\ & \dfrac{2}{x} &=& \dfrac{3}{5} -\dfrac{1}{4} + \dfrac{2}{3} \\\\ & \dfrac{2}{x} &=& \dfrac{ 3\cdot 12-15+2\cdot 20}{60} \\\\ & \dfrac{1}{x} &=& \dfrac{36-15+40}{120} \\\\ & \dfrac{1}{x} &=& \dfrac{61}{120} \\\\ & \mathbf{x} &\mathbf{=}& \mathbf{\dfrac{120}{61}} \\ \hline \end{array}\)

 

y = ?

\(\begin{array}{|lrcll|} \hline (1)+(3)-(2): & \mathbf{\dfrac{3}{5}}+\mathbf{\dfrac{1}{4}}-\mathbf{ \dfrac{2}{3}} &=& \left( \mathbf{\dfrac{1}{y}+\dfrac{1}{x}} \right) + \left( \mathbf{\dfrac{1}{z} + \dfrac{1}{y}} \right) - \left( \mathbf{\dfrac{1}{z}+\dfrac{1}{x}} \right) \\\\ & \dfrac{3}{5} +\dfrac{1}{4} - \dfrac{2}{3} &=& \dfrac{2}{y} \\\\ & \dfrac{2}{y} &=& \dfrac{3}{5} +\dfrac{1}{4} - \dfrac{2}{3} \\\\ & \dfrac{2}{y} &=& \dfrac{ 3\cdot 12+15-2\cdot 20}{60} \\\\ & \dfrac{1}{y} &=& \dfrac{36+15-40}{120} \\\\ & \dfrac{1}{y} &=& \dfrac{11}{120} \\\\ & \mathbf{y} &\mathbf{=}& \mathbf{\dfrac{120}{11}} \\ \hline \end{array}\)

 

laugh

30 oct 2017