# dududsu2

 Nombre de usuario dududsu2 Puntuación 467 Membership Stats Preguntas 103 Respuestas 55

0
55
1

### A mathematician works for $t$ hours per day and solves $p$ problems per hour, where $t$ and $p$ are positive integers and $1 dududsu2 22 dic. 2020 0 69 1 ### The graph of$y=\frac{5x^2-9}{3x^2+5x+2}$has a horizontal asymptote at$y=a$. What is$a$? dududsu2 21 dic. 2020 0 67 1 ### Let$S$be the set of all real numbers$\alpha$such that the function$\frac{x^2+5x+\alpha}{x^2 + 7x - 44}$can be expressed as a quotient dududsu2 21 dic. 2020 +1 76 5 ### If$x+y=9$and$xy=10$, what is the value of$x^3+y^3$? dududsu2 21 dic. 2020 +1 80 2 ### Find the product of all positive integer values of$c$such that$8x^2+15x+c=0$has two real roots. dududsu2 20 dic. 2020 0 38 1 ### such that for any vector$\mathbf{v},\mathbf{R} \mathbf{v}$is the reflection of$\mathbf{v}$through the$xy$-plane. dududsu2 16 dic. 2020 0 87 2 ### If$725x + 727y = 1500$and$729x+ 731y = 1508$, what is the value of$x - y$? dududsu2 16 dic. 2020 +1 57 1 ### For some constants$a$and$b,$let The function$f$has the property that$f(f(x)) = x$for all$x.$What is$a + b?$dududsu2 15 dic. 2020 0 50 1 ### ​ Find all values of$k$so that the graphs of$x^2 + y^2 = 4 + 12x + 6y$and$x^2 + y^2 = k + 4x + 12y$intersect. dududsu2 14 dic. 2020 +1 77 2 ### If$a$,$b$, and$c$are integers satisfying$a + \frac 1b = \frac{22}{7}$,$b + \frac 1c = 8$, and$abc = 21$, then find$c + \frac 1a$. dududsu2 11 dic. 2020 0 64 2 ### $\sum_{k = 2}^\infty \frac{k - 3}{k(k^2 - 1)}.$ dududsu2 10 dic. 2020 +1 62 2 ### Let$f(x)$be a polynomial of degree$4$with rational coefficients. Find$f(1).$dududsu2 10 dic. 2020 +1 50 1 ### In a certain polynomial, all the coefficients are integers, and the constant coefficient is 42. All the roots are integers, and distinct. dududsu2 10 dic. 2020 0 38 0 ### Find the remainder when$x^{100}$is divided by$(x + 1)^3.$dududsu2 10 dic. 2020 0 43 0 ### Find the remainder when$2x^6-x^4+4x^2-7$is divided by$x^2+4x+3$. dududsu2 10 dic. 2020 0 63 1 ### What is the largest three-digit integer$n\$ that satisfies$$55n\equiv 165\pmod{260}~?$$

dududsu2  10 dic. 2020