heureka

avatar
Nombre de usuarioheureka
Puntuación26367
Membership
Stats
Preguntas 17
Respuestas 5678

 #1
avatar+26367 
+3

Suppose that $f(x)$ is a linear function satisfying the equation $f(x) = 4f^{-1}(x) + 6$. Given that $f(1) = 4$, find $f(2)$.

 

 

\(\text{1. $f(x)$ is a linear function}\)

\(\begin{array}{|lrcll|} \hline f(x) =& ax +b && \quad & | \quad f(1) = 4 \\\\ f(1) =& a\cdot1 +b &=& 4 \\ & \mathbf{a +b} &\mathbf{=}& \mathbf{4 } \qquad &(1) \\ & \mathbf{a } &\mathbf{=}& \mathbf{4-b } \\ \hline \end{array} \)

 

\(\text{2. $f^{-1}(x)=\ ? $ }\)

\(\begin{array}{|rcll|} \hline f(x) &=& ax +b \\ y &=& ax +b \\ ax &=& y-b \quad & | \quad : a \\ x &=& \dfrac{y-b}{a} \quad & | \quad x \leftrightarrow y \\ y &=& \dfrac{x-b}{a} \\ \mathbf{f^{-1}(x)} &\mathbf{=}& \mathbf{\dfrac{x-b}{a}} \\ \hline \end{array}\)

 

 

\(\text{3. $f(x) = 4f^{-1}(x) + 6$ }\)

\(\begin{array}{|rcll|} \hline f(x) &=& 4f^{-1}(x) + 6 \quad & | \quad x = 1 \\\\ f(1) &=& 4f^{-1}(1) + 6 \quad & | \quad f(1) = 4 \qquad f^{-1}(1) = \dfrac{1-b}{a} \\ 4 &=& 4 \left(\dfrac{1-b}{a} \right) + 6 \quad & | \quad - 6 \\ -2 &=& 4 \left(\dfrac{1-b}{a} \right) \quad & | \quad \cdot a \\ -2a &=& 4 (1-b) \\ -2a &=& 4-4b \quad & | \quad +4b \\ 4b-2a &=& 4 \quad & | \quad : 2 \\ \mathbf{2b-a} & \mathbf{=}& \mathbf{2} \qquad &(2) \\ \hline \end{array}\)

 

 

\(\text{4. $a=\ ? \qquad b=\ ?$ }\)

\(\begin{array}{|rcll|} \hline 2b-a & = & 2 \quad & | \quad a = 4-b \\ 2b-(4-b) & = & 2 \\ 2b-4+b & = & 2 \\ 3b-4 & = & 2 \quad & | \quad +4 \\ 3b & = & 6 \quad & | \quad :3 \\ \mathbf{ b} & \mathbf{=} & \mathbf{2} \\\\ a &=& 4-b \\ a &=& 4-2 \\ \mathbf{ a} & \mathbf{=} & \mathbf{2} \\ \hline \end{array}\)

 

 

\(\text{5. $f(x)=\ ?$ }\)

\(\begin{array}{|rcll|} \hline f(x) &=& ax +b \quad & | \quad a=2 \qquad b = 2 \\\\ \mathbf{ f(x)} & \mathbf{=} & \mathbf{2x +2} \\ \hline \end{array}\)

 

 

\(\text{6. $f(2)=\ ?$ } \)

\(\begin{array}{|rcll|} \hline \mathbf{ f(x)} & \mathbf{=} & \mathbf{2x +2} \quad & | \quad x = 2 \\\\ f(2) & = & 2\cdot 2 +2 \\ \mathbf{ f(2)} & \mathbf{=} & \mathbf{6} \\ \hline \end{array}\)

 

 

laugh

11 abr 2018
 #1
avatar+26367 
+2

http://prntscr.com/j35u6u


Someone else asked this question, but I'm also confused, could someone explain how this integral was obtained.
I don't understand where the 1- part comes from

\(\mathbf{\displaystyle 4\int \limits_{0}^{D} d\sigma\ \sigma^2\ e^{-2\sigma} = \ ?}\)

 

1. Apply Integration By Parts:
Formula:

 

\(\text{Let $u = \sigma^2$ } \qquad u' = 2\sigma \\ \text{Let $v' = e^{-2\sigma}$ } \qquad v = \int d\sigma \ e^{-2\sigma} = -\frac{1}{2}e^{-2\sigma}\)

\(\begin{array}{|rcll|} \hline \int \limits_{0}^{D} d\sigma\ \underbrace{\sigma^2}_{=u}\ \underbrace{e^{-2\sigma}}_{=v'} &=& \left[ \underbrace{\sigma^2}_{=u} \underbrace{\left( -\frac{1}{2}e^{-2\sigma}\right)}_{=v} \right]_{0}^{D} -\int \limits_{0}^{D} d\sigma\ \underbrace{2\sigma}_{=u'} \underbrace{\left( -\frac{1}{2}e^{-2\sigma}\right)}_{=v} \\\\ &=& \left[ -\frac{1}{2}e^{-2\sigma}\sigma^2\right]_{0}^{D} +\int \limits_{0}^{D} d\sigma\ e^{-2\sigma}\sigma \\\\ &=& -\frac{1}{2}e^{-2D}D^2 +\int \limits_{0}^{D} d\sigma\ e^{-2\sigma}\sigma \\ \hline \end{array}\)

 

2. Apply Integration By Parts:

\(\text{Let $u = \sigma$ } \qquad u' = 1 \\ \text{Let $v' = e^{-2\sigma}$ } \qquad v = \int d\sigma \ e^{-2\sigma} = -\frac{1}{2}e^{-2\sigma}\)

\(\begin{array}{|rcll|} \hline \int \limits_{0}^{D} d\sigma\ \underbrace{e^{-2\sigma}}_{=v'} \underbrace{\sigma}_{=u} &=& \left[ \underbrace{\sigma}_{=u} \underbrace{\left( -\frac{1}{2}e^{-2\sigma}\right)}_{=v} \right]_{0}^{D} -\int \limits_{0}^{D} d\sigma\ \underbrace{1}_{=u'} \underbrace{\left( -\frac{1}{2}e^{-2\sigma}\right)}_{=v} \\\\ &=& D \left( -\frac{1}{2}e^{-2D}\right) +\int \limits_{0}^{D} d\sigma\ \frac{1}{2}e^{-2\sigma} \\\\ &=& -\frac{1}{2} e^{-2D}D + \frac{1}{2} \int \limits_{0}^{D} d\sigma\ e^{-2\sigma} \\\\ &=& -\frac{1}{2} e^{-2D}D + \frac{1}{2} \left[ -\frac{1}{2}e^{-2\sigma} \right]_{0}^{D} \\\\ &=& -\frac{1}{2} e^{-2D}D + \frac{1}{2} \left[ -\frac{1}{2}e^{-2D} - (-\frac{1}{2}e^{-2\cdot 0})\right] \\\\ &=& -\frac{1}{2} e^{-2D}D + \frac{1}{2} \left[ -\frac{1}{2}e^{-2D} - (-\frac{1}{2}e^{0})\right] \\\\ &=& -\frac{1}{2} e^{-2D}D + \frac{1}{2} \left[ -\frac{1}{2}e^{-2D} - (-\frac{1}{2}\cdot 1)\right] \\\\ &=& -\frac{1}{2} e^{-2D}D + \frac{1}{2} \left[ -\frac{1}{2}e^{-2D}+\frac{1}{2} \right] \\\\ &=& -\frac{1}{2} e^{-2D}D - \frac{1}{4} e^{-2D} + \frac{1}{4} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \mathbf{4\int \limits_{0}^{D} d\sigma\ \sigma^2 e^{-2\sigma} } &=& 4\left[ -\frac{1}{2}e^{-2D}D^2 -\frac{1}{2} e^{-2D}D - \frac{1}{4} e^{-2D} + \frac{1}{4} \right] \\\\ &=& -2e^{-2D}D^2 -2e^{-2D}D - e^{-2D} +1 \\\\ &=& -e^{-2D}(2D^2 +2D +1) +1 \\\\ &\mathbf{=}& \mathbf{1-e^{-2D}(2D^2 +2D +1) } \\ \hline \end{array}\)

 

 

laugh

10 abr 2018