Registro
Ingresar
Nombre de usuario
Contraseña
Ingresar
olvidó su contraseña
Inicio
Foro
+0
Formulario
Matemáticas
Ayuda
números complejos
cálculo diferencial
cálculo diferencial
Ecuaciones
Gráficas de funciones
Algebra lineal
Teoría de números
pourcentages
Fonctions estándar
Probabilidad
Trigonometría
Conversión de unidades
Unidades
Sobre
Impreso
Política de privacidad
Términos de Servicio
Credits
Google+
Facebook
Email de contacto
MEMEG0D
Nombre de usuario
MEMEG0D
Puntuación
250
Membership
Stats
Preguntas
63
Respuestas
1
63 Questions
1 Answers
0
1
3
+250
Counting
Find the number of ways that Magnus can give out $12$ identical stickers to $2$ of his friends, if every friend gets at least one sticker.
●
●
●
MEMEG0D
4 nov 2024
0
2
0
+250
Counting
Miyu is giving out $8$ identical chocolates to her $5$ friends, including Dhruv. All possible distributions are equally likely. What is the probability that Dhruv gets exactly $7$ chocolates?
MEMEG0D
4 nov 2024
0
1
0
+250
Counting
How many solutions are there to the equation
u + v + w + x + y + z = 2,
where $u,$ $v,$ $w,$ $x,$ $y,$ and $z$ are nonnegative integers, and $x$ is at most $1?$
MEMEG0D
4 nov 2024
0
2
2
+250
Number Theory
Carl writes eight consecutive three-digit numbers on a blackboard. Each number that Carl writes is divisible by 2, 3, 4, or 5. What is the sum of the digits of the smallest number that Carl wrote?
●
●
MEMEG0D
30 oct 2024
0
2
2
+250
Number Theory
When a prime is divided by 60, the remainder is a composite number. When a second prime is divided by 60, the remainder is a prime. Find the smallest possible value of the second prime.
●
●
MEMEG0D
30 oct 2024
0
2
1
+250
Number Theory
How many three-digit numbers are equal to five times the sum of their digits?
●
MEMEG0D
30 oct 2024
0
3
0
+250
Number Theory
A four-digit hexadecimal integer is written on a napkin such that the units digit is illegible. The first three digits are 2, $F$, and 1. If the integer is a multiple of $19_{10}$, what is the units digit?
MEMEG0D
29 oct 2024
0
2
1
+250
Number Theory
The numbers $24^2 = 576$ and $56^2 = 3136$ are examples of perfect squares that have a units digits of $6.$
If the units digit of a perfect square is $5,$ then what are the possible values of the tens digit?
●
MEMEG0D
29 oct 2024
0
4
0
+250
Number Theory
Which of the residues 0, 1, 2, ..., 11 satisfy the congruence 3x = 1 mod 12?
MEMEG0D
29 oct 2024
0
3
0
+250
Number Theory
Which of the residues 0, 1, 2, 3, 4 satisfy the congruence x^5 = 0 mod 5?
MEMEG0D
29 oct 2024
+1
5
0
+250
Number Theory
What are the first 5 digits after the decimal point (technically the hexadecimal point...) when the fraction $\frac{2}{7}$ is written in base $16$?
MEMEG0D
28 oct 2024
0
4
0
+250
Number Theory
Let $N$ be a positive integer. The number $N$ has three digits when expressed in base $7$. When the number $N$ is expressed in base $12$, it has the same three digits, in reverse order. What is $N$? (Express your answer in decim
lee mas ..
MEMEG0D
28 oct 2024
0
4
0
+250
Number Theory
What is the largest positive integer $n$ such that $1457$, $1797$, $709$, $15$, $24$, $197$, $428$ all leave the same remainder when divided by $n$?
MEMEG0D
28 oct 2024
«
último
5
4
..
2
1
»