Loading [MathJax]/extensions/TeX/color.js
 
+0  
 
0
679
1
avatar

2(x²-14x+49-y2)

 Nov 24, 2014

Best Answer 

 #1
avatar+23254 
+5

If you are trying to factor this:

2[ x² - 14x + 49 - y² ]

Separate teh terms as follows:

2[ (x² - 14x + 49) - y² ]

Factor that section:

2[ (x - 7)(x - 7) - y² ]

2[ (x - 7)² - y² ]

Now factor  (x - 7)² - y²  as the difference of squares:

     Since  A² - B²  =  (A + B)(A - B), substituting (x - 7) for A and y for B, 

          (x - 7)² - y²   =  [(x - 7) + y][(x - 7) - y]  =  (x - 7 + y)(x - 7 - y)

2(x - 7 + y)(x - 7 - y)

 Nov 24, 2014
 #1
avatar+23254 
+5
Best Answer

If you are trying to factor this:

2[ x² - 14x + 49 - y² ]

Separate teh terms as follows:

2[ (x² - 14x + 49) - y² ]

Factor that section:

2[ (x - 7)(x - 7) - y² ]

2[ (x - 7)² - y² ]

Now factor  (x - 7)² - y²  as the difference of squares:

     Since  A² - B²  =  (A + B)(A - B), substituting (x - 7) for A and y for B, 

          (x - 7)² - y²   =  [(x - 7) + y][(x - 7) - y]  =  (x - 7 + y)(x - 7 - y)

2(x - 7 + y)(x - 7 - y)

geno3141 Nov 24, 2014

0 Online Users