Loading [MathJax]/jax/output/SVG/config.js
 
+0  
 
0
2461
1
avatar

ABCD is a parallelogram, AC=9cm, DC=11cm, angle DAC=100'.

Calculate the are of the parallelogram

i think you use the cosine rule but im not sure, please help!

 Dec 2, 2014

Best Answer 

 #1
avatar+23254 
+5

There is a formula for the area of a parallelogram:  Area = a·b·sin(∠C)

where a and b are adjacent sides and ∠C is the angle included between those two sides:

Unfortunately, we have ∠DAC, not ∠DCA. So, let's find ∠DCA.

Look at triangle ACD:  We can find ∠DCA if we know both ∠DAC and ∠ADC.

To find the size of ∠ADC, let's use the Law of Sines:

   sin(∠CDA) / AC  =  sin(∠CAD) / CD

--->   sin(∠CDA) / 9  =  sin(100°) / 11   --->  sin(∠CDA)  =  0.80575   --->  ∠CDA  =  53.683°

Since ∠CAD =  100°  and ∠CDA = 53.683° , then ∠ACD = 26.3°

--->  Area  =  9·11·sin(26.3°)  =  43.86

 Dec 2, 2014
 #1
avatar+23254 
+5
Best Answer

There is a formula for the area of a parallelogram:  Area = a·b·sin(∠C)

where a and b are adjacent sides and ∠C is the angle included between those two sides:

Unfortunately, we have ∠DAC, not ∠DCA. So, let's find ∠DCA.

Look at triangle ACD:  We can find ∠DCA if we know both ∠DAC and ∠ADC.

To find the size of ∠ADC, let's use the Law of Sines:

   sin(∠CDA) / AC  =  sin(∠CAD) / CD

--->   sin(∠CDA) / 9  =  sin(100°) / 11   --->  sin(∠CDA)  =  0.80575   --->  ∠CDA  =  53.683°

Since ∠CAD =  100°  and ∠CDA = 53.683° , then ∠ACD = 26.3°

--->  Area  =  9·11·sin(26.3°)  =  43.86

geno3141 Dec 2, 2014

1 Online Users