Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
670
2
avatar

2(ab)+1(a+b)   

(disregard the parenthesis is the only way to show division)

 Oct 10, 2014

Best Answer 

 #2
avatar+130474 
+5

Here's an easy way to do this

Multiply the numerators of both fractions by the denominators of the other fraction and add the results...so we have

2(a +b)  + 1(a-b)  =   2a + 2b + a - b  =  3a +b.....now, put this result over the product of the denominators.....so we have

(3a + b) / [(a+b)(a-b)] =   (3a + b) / (a2 - b2)

And that's it.......

 

 Oct 10, 2014
 #1
avatar+23254 
0

You can multiply the two denominators together to get a common denominator:  (a - b)*(a + b).

Multilply the first term by  (a + b) / (a + b)  and multiply the second term by  (a - b) / (a - b):

[ 2 / (a - b) ] * [ (a + b) / (a + b) ]  =  (2a + 2b) / [ (a + b) / (a - b) ]

[ 1 / (a + b) ] * [ (a - b) / (a - b) ]  =  (a - b) / [ (a + b) / (a - b) ]

Now, add the two numerators:  (2a + 2b) + (a - b)  =  (3a + b)

Writing this over the common denominator, the answer is:          (3a + b) /[ (a + b) / (a - b) ]

 Oct 10, 2014
 #2
avatar+130474 
+5
Best Answer

Here's an easy way to do this

Multiply the numerators of both fractions by the denominators of the other fraction and add the results...so we have

2(a +b)  + 1(a-b)  =   2a + 2b + a - b  =  3a +b.....now, put this result over the product of the denominators.....so we have

(3a + b) / [(a+b)(a-b)] =   (3a + b) / (a2 - b2)

And that's it.......

 

CPhill Oct 10, 2014

0 Online Users