Loading [MathJax]/jax/output/SVG/config.js
 
+0  
 
0
571
1
avatar

Consider the following binomial probability distribution:

P(x)=(10/x)  (0.65)^x (0.35)^10-x,  x=0,1,2,3...,10

a. is x a discrete or a continuous random variable?

b. calculate the mean of the binomial probability distribution.

c. calculate the standard deviation of the binomial probability distribution. 

*** Please explain how you got the answer** 

Thank you

 Jan 16, 2015

Best Answer 

 #1
avatar+23254 
+5

I don't understand how P(x) = 10/x relates to the rest of the problem, especially since you allow one of the values to be zero. Ignoring that:

Since you have 11 distinct values (0, 1, ..., 10), it is a discrete function.

Mean  =  n · p  =  11 x 0.65  =  7.15

Standard deviation  =  √ (n · p · q)  =  √ (11 · 0.65 · 0.35)  =  1.545

 Jan 16, 2015
 #1
avatar+23254 
+5
Best Answer

I don't understand how P(x) = 10/x relates to the rest of the problem, especially since you allow one of the values to be zero. Ignoring that:

Since you have 11 distinct values (0, 1, ..., 10), it is a discrete function.

Mean  =  n · p  =  11 x 0.65  =  7.15

Standard deviation  =  √ (n · p · q)  =  √ (11 · 0.65 · 0.35)  =  1.545

geno3141 Jan 16, 2015

1 Online Users