Loading [MathJax]/jax/output/SVG/config.js
 
+0  
 
0
662
2
avatar

Expand this binomial power (x^2+2/x)^4

 Oct 16, 2014

Best Answer 

 #2
avatar+23254 
+5

If you can't use the calculator:

If you use Pascal's triangle to get the coefficients:

Row 0:                                1

Row 1:                             1     1

Row 2:                         1      2       1

Row 3:                     1      3      3       1

Row 4:                  1     4       6      4      1                      

(a + b) ^ 4  =  1a^4  +  4a^3b  +  6a^2b^2  +  4ab^3  + 1b^4

In (x² + 2/x)^4,  a = x²   and   b = 2/x

                       1(x²)^4  +  4(x²)^3(2/x)  +  6(x²)^2(2/x)^2  +  4(x²)(2/x)^3  +  1(2/x)^4

                            x^8  +  4(x^6)(2/x)  +  6(x^4)(4/x²)  +  4(x²)(8/x^3)  + 16/x^4

                            x^8  +  8/x^5  +  24x^2  +  32/x  +  16/x^4

A procedure that isn't as easy as doing it by calculator, and a way in which more mistakes can be made!

If you must do it by hand and if you know combinations (nCr) you don't need to use Pascal's triangle to find the coefficients: the coefficients of row 4 are:   4C0,  4C1,   4C2,   4C3,   4C4

 Oct 16, 2014
 #1
avatar+26397 
+5

Expand this binomial power (x^2+2/x)^4

 Oct 16, 2014
 #2
avatar+23254 
+5
Best Answer

If you can't use the calculator:

If you use Pascal's triangle to get the coefficients:

Row 0:                                1

Row 1:                             1     1

Row 2:                         1      2       1

Row 3:                     1      3      3       1

Row 4:                  1     4       6      4      1                      

(a + b) ^ 4  =  1a^4  +  4a^3b  +  6a^2b^2  +  4ab^3  + 1b^4

In (x² + 2/x)^4,  a = x²   and   b = 2/x

                       1(x²)^4  +  4(x²)^3(2/x)  +  6(x²)^2(2/x)^2  +  4(x²)(2/x)^3  +  1(2/x)^4

                            x^8  +  4(x^6)(2/x)  +  6(x^4)(4/x²)  +  4(x²)(8/x^3)  + 16/x^4

                            x^8  +  8/x^5  +  24x^2  +  32/x  +  16/x^4

A procedure that isn't as easy as doing it by calculator, and a way in which more mistakes can be made!

If you must do it by hand and if you know combinations (nCr) you don't need to use Pascal's triangle to find the coefficients: the coefficients of row 4 are:   4C0,  4C1,   4C2,   4C3,   4C4

geno3141 Oct 16, 2014

0 Online Users