find the equation of the line which is perpendicular to the line 3x+2y-5=0 and which passes through the point of intersection of the lines 4x+y-5=0
We can do this as follows: (Note: In copying the LaTeX from Tekmaker and pasting it here the third equation has been renumbered to (1)!!!. The third equation below should be numbered (3), of course.)
Let's first rewrite the two given equations as: \begin{equation} y1 = -\frac{3}{2}x+\frac{5}{2} \end{equation} \begin{equation} y2 = -4x+5 \end{equation}
andthelineperpendiculartothefirstoftheaboveas:y3=mx+cwhere$m$isitsgradientand$c$isitsintersectionwiththey−axis.
Thegradient,$m$,isgivenby−1/thegradientofthelinetowhichitisperpendicular,so$m=23$Tofindthepointofintersectionoflines(1)and(2)weneedtoequatethem: -\frac{3}{2}x+\frac{5}{2}=-4x+5andsolvefor$x$.Thisisstraightforwardandresultsin$x=1$.Pluggingthisbackineitherequation(1)orequation(2)wefindthatthevalueofyattheintersectionpointisalso$y=1$Nowweputtheknownvaluesof$x$and$y$attheintersectionpoint,togetherwithourvaluefor$m$intoequation(3): 1=\frac{2}{3}*1+c$$
fromwhichweget$c=13$;so,usingequation(3),wegettheequationoftheperpendicularlineas: y3=\frac{2}{3}x+\frac{1}{3}
Let's plot a graph to see if the result looks sensible:
We can do this as follows: (Note: In copying the LaTeX from Tekmaker and pasting it here the third equation has been renumbered to (1)!!!. The third equation below should be numbered (3), of course.)
Let's first rewrite the two given equations as: \begin{equation} y1 = -\frac{3}{2}x+\frac{5}{2} \end{equation} \begin{equation} y2 = -4x+5 \end{equation}
andthelineperpendiculartothefirstoftheaboveas:y3=mx+cwhere$m$isitsgradientand$c$isitsintersectionwiththey−axis.
Thegradient,$m$,isgivenby−1/thegradientofthelinetowhichitisperpendicular,so$m=23$Tofindthepointofintersectionoflines(1)and(2)weneedtoequatethem: -\frac{3}{2}x+\frac{5}{2}=-4x+5andsolvefor$x$.Thisisstraightforwardandresultsin$x=1$.Pluggingthisbackineitherequation(1)orequation(2)wefindthatthevalueofyattheintersectionpointisalso$y=1$Nowweputtheknownvaluesof$x$and$y$attheintersectionpoint,togetherwithourvaluefor$m$intoequation(3): 1=\frac{2}{3}*1+c$$
fromwhichweget$c=13$;so,usingequation(3),wegettheequationoftheperpendicularlineas: y3=\frac{2}{3}x+\frac{1}{3}
Let's plot a graph to see if the result looks sensible: