Processing math: 100%
 
+0  
 
0
58
1
avatar+977 

In triangle $PQR$, let $M$ be the midpoint of $\overline{PQ}$, let $N$ be the midpoint of $\overline{PR}$, and let $O$ be the intersection of $\overline{QN}$ and $\overline{RM}$, as shown. If $\overline{QN}\perp\overline{PR}$, $QN = 1$, and $PR =1$, then find $OR$.

 Feb 23, 2024
 #1
avatar
0

O is the centroid of the triangle and divides the medians in ratio 2:1. So:
ON+QO=QN=1ONQO=12ON=13
Also, N is the midpoint of PR so:
NR=PR2=12
 

Finally using pythagorean theorem on ONR we get:
OR=NR2+ON2OR=132+122OR=136

 Feb 24, 2024

0 Online Users