Loading [MathJax]/jax/output/SVG/config.js
 
+0  
 
0
616
2
avatar

Below is a portion of the graph of a quadratic function, $y=q(x)=ax^2+bx+c$: [asy] import graph; size(8cm); real lsf=0.5; pen dps=linewidth(0.7)+fontsize(10); defaultpen(dps); pen ds=black; real xmin=-0.99,xmax=10.5,ymin=-5.5,ymax=5.5; pen cqcqcq=rgb(0.75,0.75,0.75); /*grid*/ pen gs=linewidth(0.7)+cqcqcq+linetype("2 2"); real gx=1,gy=1; for(real i=ceil(xmin/gx)*gx;i<=floor(xmax/gx)*gx;i+=gx) draw((i,ymin)--(i,ymax),gs); for(real i=ceil(ymin/gy)*gy;i<=floor(ymax/gy)*gy;i+=gy) draw((xmin,i)--(xmax,i),gs); Label laxis; laxis.p=fontsize(10); xaxis("",xmin,xmax,Ticks(laxis,Step=1.0,Size=2,NoZero),Arrows(6),above=true); yaxis("",ymin,ymax,Ticks(laxis,Step=1.0,Size=2,NoZero),Arrows(6),above=true); real f1(real x){return 4-(x-8)*(x-7)/8;} draw(graph(f1,-0.99,10.5),linewidth(1)); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); label("$y=q(x)$",(10.75,2.5),E); [/asy] The value of $q(15)$ is an integer. What is that integer?

 Nov 23, 2014

Best Answer 

 #2
avatar+130474 
+5

It appears that the vertex is at  (7.5, 4)....and since a parabola is symmetric about its vertex, the y value at x = 15 will have the same value as at x = 0, i.e., -3,  since x =0  and x = 15 are both 7.5 units from x = 7.5 ...so we have ...... q(15) = -3

 

 Nov 23, 2014
 #1
avatar+23254 
+5

It appears that this is a parabola with vertex at (7.5, 4) and passing through the point (0, -3).

An equation for a parabola is  y - k = a(x - h)²   The vertex is (h, k)

So, we have:  y - 4 = a(x - 7.5)² 

To find the value for a, let's use the point (0, -3):  -3 - 4 = a(0 - 7.5)² 

--->   -7 = a(-7.5)²     --->   -7 = 56.25a   --->   a = -28/225

--->   y - 4 = (-28/225)(x - 7.5)² 

Substituting 15 for x:  y - 4 = (-28/225)(15 - 7.5)²   -->  y =  -3

 Nov 23, 2014
 #2
avatar+130474 
+5
Best Answer

It appears that the vertex is at  (7.5, 4)....and since a parabola is symmetric about its vertex, the y value at x = 15 will have the same value as at x = 0, i.e., -3,  since x =0  and x = 15 are both 7.5 units from x = 7.5 ...so we have ...... q(15) = -3

 

CPhill Nov 23, 2014

0 Online Users