Processing math: 100%
 
+0  
 
-2
837
1
avatar+152 

If $f(x)=\dfrac{2}{x+1}$, then what is the value of $f^{-1}\left(\frac{1}{5}\right)$?

 Dec 27, 2019
 #1
avatar+130474 
+2

$f(x)=2x+1$

 

 

$f1(15)$

 

Note that  we  need  to  solve this

 

(1/5)  =   2 / ( x + 1)          and we can write

 

5   =  ( x + 1) / 2             multily both sides by 2

 

10  = x +  1                   subtract 1 from both sides

 

=  x  =  f-1(1/5)

 

So  the point (9, 1/5)  is on f(x)     and the point  (1/5 , 9)  is on f-1 (x)  

 

cool cool cool

 Dec 27, 2019

3 Online Users

avatar
avatar