Loading [MathJax]/jax/output/SVG/config.js
 
+0  
 
0
617
1
avatar

The equation $x^2+14x=33$ has two solutions. The positive solution has the form $\sqrt{a}-b$ for positive natural numbers $a$ and $b$. What is $a+b$?

 Nov 4, 2014

Best Answer 

 #1
avatar+23254 
+5

Get it into the form so that you can use the quadratic formula.

x² + 14x = 33     --->     x² + 14x - 33  =  0

a = 1   b = 14   c = -33     Quadratic formula:  x  =  [ -b ± √(b² -4·a·c) ] / (2·a)

Positive solution:  x  =  [ -14 + √(14² -4·1·-33) ] / (2·1)  =  [-14 + √328]/2

     =     [-14 + 2√82]/2     =     -7 + √82     =     √82 - 7

(Notice that the problem has a to be the value under the square root sign and b is the number after the minus sign.)

--->  a  =  82     and  b = 7

So, how much is  a + b ?

 Nov 4, 2014
 #1
avatar+23254 
+5
Best Answer

Get it into the form so that you can use the quadratic formula.

x² + 14x = 33     --->     x² + 14x - 33  =  0

a = 1   b = 14   c = -33     Quadratic formula:  x  =  [ -b ± √(b² -4·a·c) ] / (2·a)

Positive solution:  x  =  [ -14 + √(14² -4·1·-33) ] / (2·1)  =  [-14 + √328]/2

     =     [-14 + 2√82]/2     =     -7 + √82     =     √82 - 7

(Notice that the problem has a to be the value under the square root sign and b is the number after the minus sign.)

--->  a  =  82     and  b = 7

So, how much is  a + b ?

geno3141 Nov 4, 2014

1 Online Users