Loading [MathJax]/extensions/TeX/color.js
 
+0  
 
0
842
1
avatar

Find all values of t such that 8t^2 \le 3-10t

Please enter your response in interval notation. Refer to Formatting Tips below for detailed instructions on formatting your response.

 Oct 26, 2014

Best Answer 

 #1
avatar+23254 
+5

Rewrite as:              8t² + 10t - 3  ≤  0

Factor:                (4t - 1)(2t + 3)  ≤  0

Solving for t:         t = 1/4   or  t  =  -3/2

These two point divide the number line into three sections:  t ≤ -3/2    -3/2 ≤  t ≤  1/4    t ≥ 1/4

Try a number that is less than -3/2, say -2:  8(-2)² + 10(-2) - 3  =  9  -->  this section doesn't work!

Try a number between -3/2 and 1/2, say 0:  8(0)² + 10(0) - 3  =  -3  -->  this section works!

Try a number greater than 1/4, say 2:   8(2)² + 10(2) - 3  =  49  -->  this section doesn't work!

The only region that works is:   -3/2 ≤  t ≤  1/4   --->  [-3/2, 1/4] 

 Oct 26, 2014
 #1
avatar+23254 
+5
Best Answer

Rewrite as:              8t² + 10t - 3  ≤  0

Factor:                (4t - 1)(2t + 3)  ≤  0

Solving for t:         t = 1/4   or  t  =  -3/2

These two point divide the number line into three sections:  t ≤ -3/2    -3/2 ≤  t ≤  1/4    t ≥ 1/4

Try a number that is less than -3/2, say -2:  8(-2)² + 10(-2) - 3  =  9  -->  this section doesn't work!

Try a number between -3/2 and 1/2, say 0:  8(0)² + 10(0) - 3  =  -3  -->  this section works!

Try a number greater than 1/4, say 2:   8(2)² + 10(2) - 3  =  49  -->  this section doesn't work!

The only region that works is:   -3/2 ≤  t ≤  1/4   --->  [-3/2, 1/4] 

geno3141 Oct 26, 2014

4 Online Users

avatar
avatar
avatar