Loading [MathJax]/jax/output/SVG/config.js
 
+0  
 
0
2564
1
avatar

If you deposited $1,000 in an account paying 6% interest compounded annually, how long would it take to double? Use formula A=P(1+r/n)^nt

 Nov 2, 2014

Best Answer 

 #1
avatar+23254 
+5

Using that formula:     A = 2000          P = 1000         r = 0.06         n= 1         Solve for t.

2000  =  1000(1 + 0.06/1)^(1·t)

2000  =  1000(1.06)^t

Divide by 1000:

2  =  (1.06)^t

If the variable is an exponent, use logs:

log(2)  =  log( 1.06^t )

An exponent in a log comes out as a multiplier:

log(2)  =  t·log(1.06

Divide both sides by log(1.06):

log(2) / log(1.06)  =  t

t  =  11.9  years    (approximately)

 Nov 2, 2014
 #1
avatar+23254 
+5
Best Answer

Using that formula:     A = 2000          P = 1000         r = 0.06         n= 1         Solve for t.

2000  =  1000(1 + 0.06/1)^(1·t)

2000  =  1000(1.06)^t

Divide by 1000:

2  =  (1.06)^t

If the variable is an exponent, use logs:

log(2)  =  log( 1.06^t )

An exponent in a log comes out as a multiplier:

log(2)  =  t·log(1.06

Divide both sides by log(1.06):

log(2) / log(1.06)  =  t

t  =  11.9  years    (approximately)

geno3141 Nov 2, 2014

2 Online Users

avatar
avatar