Loading [MathJax]/jax/output/SVG/config.js
 
+0  
 
0
1038
1
avatar

Let f(x) = 3x^2 - 4x. Find the constant k such that f(x) = f(k - x) for all real numbers x.

 Nov 6, 2014
 #1
avatar+23254 
0

f(x)  =  3x² - 4x

f(k - x)  =  3(k - x)² - 4(k - x)  = 3(k² -2kx + kx²) - 4k + 4x  =  3k² - 6kx + 3x² - 4k + 4x 

for f(x)  =  f(k - x)     ---     3x² - 4x  =   3k² - 6kx + 3k² - 4k + 4x 

The 3x²  on the left side matches the 3x² on the right side, so we can ignore them leaving:

 - 4x  =   3k² - 6kx - 4k + 4x 

On the right side: 3k² - 4k is a constant; there is no equaivalent on the left side, so 3k² - 4k  =  0

--->     k(3k - 4)  =  0       --->     So either k = 0  or 3k - 4  =  0   --->  k = 0  or  k  =  4/3

What we have left:  -4x  =  -6kx + 4x

                                -4x  =  (-6k + 4)x

The only way that this can be true is if  -4  =  -6k + 4, or  k = 4/3

Answer:  k  =  4/3

 Nov 6, 2014

0 Online Users