Processing math: 100%
 
+0  
 
0
673
2
avatar

1. Let k be a positive real number. The line x+y=k and the circle x2+y2=k are drawn. Find k so that the line is tangent to the circle. 

 

(No image for #1)

 

2. A circle passes through the points (2,0)(2,0), and (3,2). Find the center of the circle. Enter your answer as an ordered pair.

 

(No image for #2)

 

Thank you!

 May 3, 2020
 #1
avatar
0

2) The center of the circle is (0, 7/4).

 May 3, 2020
 #2
avatar+659 
+1

One question per post please.

1. This is mostly geometry believe it or not.

The value of K in the circle equation would be the blue line squared. Or in other words, the blue line is k

The value of BC in the tangent equation would just be k

 

We know ABC is a 45 - 45 - 90 triangle (If the coefficients of x and y are 1 when graphed in standard form for the red line). The blue line is the perpendicular bisector. 

 

Based on pythagorean theorem: 2k2=k2 (two legs are k and hypotenuse is BC)

2k=k2

k(k2)=0

k=2

 May 3, 2020

3 Online Users