Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1933
5
avatar



Given Z = 2(cos 148º + isin 148º) and W = 5(cos 11º + isin 11º), find and simplify Z divided by W. Round numerical values to the nearest hundredth.








 


A)0.4(cos 137º - isin 137º)




 




 


B)0.4(cos 137º + isin 137º)




 




 


C)10(cos 137º - isin 137º)




 




 


D)10(cos 137º + isin 137º)




 




 Nov 24, 2014

Best Answer 

 #2
avatar+118703 
+10

I have another method :)

 

cosθ+isinθ=eiθ 

 

where theta is in radians

 

1480=148π180radians110=11π180radians

 

Given Z = 2(cos 148º + isin 148º) and W = 5(cos 11º + isin 11º), find and simplify Z divided by W.

 

becomes  

 

2e(148π/180)i5e(11π/180)i=0.4e[(148π/180)(11π/180)]i

 

(148×π180)(11×π180)=2.3911010752322315

 

=0.4cos (2.3911010752322315) +0.4* isin(2.3911010752322315) 

 

remember this is in radians.

 

= -0.2925 + 0.2728i

 

=  -0.29 + 0.27i

 

I think that method is correct. 

 Nov 25, 2014
 #1
avatar+23254 
+10

If you have two complex numbers written in polar notation, for example:

A = a(cosα + i·sinα)     and     B = b(cosβ + i·sinβ)  

Then A / B  =  (a/b)( cos(α - β) + i·sin(α - β) )

Can you see how to apply this?

 Nov 24, 2014
 #2
avatar+118703 
+10
Best Answer

I have another method :)

 

cosθ+isinθ=eiθ 

 

where theta is in radians

 

1480=148π180radians110=11π180radians

 

Given Z = 2(cos 148º + isin 148º) and W = 5(cos 11º + isin 11º), find and simplify Z divided by W.

 

becomes  

 

2e(148π/180)i5e(11π/180)i=0.4e[(148π/180)(11π/180)]i

 

(148×π180)(11×π180)=2.3911010752322315

 

=0.4cos (2.3911010752322315) +0.4* isin(2.3911010752322315) 

 

remember this is in radians.

 

= -0.2925 + 0.2728i

 

=  -0.29 + 0.27i

 

I think that method is correct. 

Melody Nov 25, 2014
 #3
avatar+118703 
0

How did you get your equation Geno.

I can see another method but you seem to have used a 3rd method 

 Nov 25, 2014
 #4
avatar+33654 
+5

To answer your question Melody, use the following notation;

A=aeiα

B=beiβ

then

AB=abei(αβ)ab(cos(αβ)+isin(αβ))

.

 Nov 25, 2014
 #5
avatar+118703 
0

There you go.

I am practicing my philosophical approach.

Why do it the easy way if there is a long way that works just as well.    LOL

Thanks Alan.  

 Nov 25, 2014

1 Online Users