sasha and maurice are lab partners in science class. Today they need to weigh liquids using a balance scale. They have a tray full of 80 weights that they can use. The weights are of four different kinds: 50 grams, 25 grams, 15 grams, and 5 grams. The first liquid weihts 85 grams. How many different combinations of weights will balance the scale for the first liquid?
1.85g=4×15g+1×25g2.85g=1×5g+2×15g+1×50g3.85g=1×5g+2×15g+2×25g4.85g=2×5g+1×25g+1×50g5.85g=2×5g+3×25g6.85g=2×5g+5×15g7.85g=3×5g+3×15g+1×25g8.85g=4×5g+1×15g+1×50g9.85g=4×5g+1×15g+2×25g10.85g=5×5g+4×15g11.85g=6×5g+2×15g+1×25g12.85g=7×5g+1×50g13.85g=7×5g+2×25g14.85g=8×5g+3×15g15.85g=9×5g+1×15g+1×25g16.85g=11×5g+2×15g17.85g=12×5g+1×25g18.85g=14×5g+1×15g19.85g=17×5g
There are many possibilities (provided they have enough weights of each size). I'll let you figure out the number of 5 gram weights needed in each possibility:
50 gm 25 gm 15 gm 5 gm
1 1 ?
1 1 ?
1 2 ?
1 ?
3 ?
2 ?
2 1 ?
1 1 ?
1 2 ?
1 3 ?
1 4 ?
1 ?
2 ?
3 ?
4 ?
5 ?
?
Assuming that we have 20 weights of each type
5 , 15, 25, 50
Here are all the combinations
(1 x 50) + (7 x 5) (4 x 15) + (5 x 5) (1 x 50) + (1 x 25) + (2 x 5)
(1 x 25) + (4 x 15) (3 x 15) + (8 x 5) (1 x 50) + (1 x 15) + (4 x 5)
(1 x 25) + (12 x 5) (2 x 15) + (11 x 5) (1 x 50) + (2 x 15) + (1 x 5)
(2 x 25) + (7 x 5) (1 x 15) + (14 x 5) (2 x 25) + (2 x 15) + (1 x 5)
(3 x 25) + (2 x 5) (17 x 5) (2 x 25) + (1 x 15) + (4 x 5)
(5 x 15) + (2 x 5) (1 x 25) + (3 x 15) + (3 x 5)
(1 x 25) + (2 x 15) + (6 x 5)
(1 x 25) + (1 x 15) + (9 x 5)
I think that's it.......
1.85g=4×15g+1×25g2.85g=1×5g+2×15g+1×50g3.85g=1×5g+2×15g+2×25g4.85g=2×5g+1×25g+1×50g5.85g=2×5g+3×25g6.85g=2×5g+5×15g7.85g=3×5g+3×15g+1×25g8.85g=4×5g+1×15g+1×50g9.85g=4×5g+1×15g+2×25g10.85g=5×5g+4×15g11.85g=6×5g+2×15g+1×25g12.85g=7×5g+1×50g13.85g=7×5g+2×25g14.85g=8×5g+3×15g15.85g=9×5g+1×15g+1×25g16.85g=11×5g+2×15g17.85g=12×5g+1×25g18.85g=14×5g+1×15g19.85g=17×5g