Simplify the radical expression : (-1-√2)/(1+√2), (√8)/(√2+3) , (√3)/(√27-√3) , (√2-√8)/2(√2-1) , (3√3-2√2)/(√3-√2), (√2-√8)/(2√2-1), (1-√2)/(1+√2), (3√3-2√2)/(√3-√2)
Simplify the radical expression :
1.) (-1-√2)/(1+√2)
(−1−√2)(1+√2)=−(1+√2)(1+√2)=−1
2.) (√8)/(√2+3)
√8√2+3=2√2√2+3∗√2−3√2−3=−27(2−3√2)
3.) (√3)/(√27-√3)
√3√27−√3=√33√3−√3=√32√3=12
4.) (√2-√8)/2(√2-1)
√2−√82(√2−1)=√2−2√22(√2−1)=−√22(√2−1)∗√2+1√2+1=−√22(√2+1)=−(1+√22)
5.) (3√3-2√2)/(√3-√2)
3√3−2√2√3−√2∗√3+√2√3+√2=(3√3−2√2)∗(√3+√2)=9+√6−4=5+√6
6.) (√2-√8)/(2√2-1)
\samll √2−√82√2−1=√2−2√22√2−1=−√22√2−1∗2√2+12√2+1=−√27(2√2+1)=−17(4+√2)
7.) (1-√2)/(1+√2)
1−√21+√2∗1−√21−√2=−(1−√2)(1−√2)=−(1−2√2+2)=−(3−2√2)=2√2−3
again 5.) (3√3-2√2)/(√3-√2)
To simplify these, multiply both the numerator and denominator of the fraction by the conjugate of the denominator.
The conjugate of x + √y is x - √y.
The conjugate of x - √y is x + √y.
The conjugate of x + a√y is x - a√y
As an example:
To simplify (2 + √3) / (4 - √5) multiply both the numerator and denominator by 4 + √5:
(2 + √3) / (4 - √5) x (4 + √5) / (4 + √5)
Numerator: (2 + √3)(4 + √5) = 8 + 4√3 +2√5 + √15
Denominator: (4 - √5)(4 + √5) = 16 - 4√5 + 4√5 - √25 = 16 - 5 = 11
Answer: ( 8 + 4√3 +2√5 + √15 ) / 11
Any questions about this example?
Simplify the radical expression :
1.) (-1-√2)/(1+√2)
(−1−√2)(1+√2)=−(1+√2)(1+√2)=−1
2.) (√8)/(√2+3)
√8√2+3=2√2√2+3∗√2−3√2−3=−27(2−3√2)
3.) (√3)/(√27-√3)
√3√27−√3=√33√3−√3=√32√3=12
4.) (√2-√8)/2(√2-1)
√2−√82(√2−1)=√2−2√22(√2−1)=−√22(√2−1)∗√2+1√2+1=−√22(√2+1)=−(1+√22)
5.) (3√3-2√2)/(√3-√2)
3√3−2√2√3−√2∗√3+√2√3+√2=(3√3−2√2)∗(√3+√2)=9+√6−4=5+√6
6.) (√2-√8)/(2√2-1)
\samll √2−√82√2−1=√2−2√22√2−1=−√22√2−1∗2√2+12√2+1=−√27(2√2+1)=−17(4+√2)
7.) (1-√2)/(1+√2)
1−√21+√2∗1−√21−√2=−(1−√2)(1−√2)=−(1−2√2+2)=−(3−2√2)=2√2−3
again 5.) (3√3-2√2)/(√3-√2)