sin(x) + sin(x)·cot²(x)
= sin(x) + sin(x)·[cos²(x)/sin²(x)] since cot(x) = cos(x) / sin(x)
= sin(x) + cos²(x)/sin(x) cancel out the sin(x) factor
= sin²(x)/sin(x) + cos²(x)/sin(x) write both terms with the common denominator of sin(x)
= [ sin²(x) + cos²(x) ] sin(x) add, using the common denominator
= 1 / sin(x) sin²(x) + cos²(x) = 1
= csc(x)
sin(x) + sin(x)·cot²(x)
= sin(x) + sin(x)·[cos²(x)/sin²(x)] since cot(x) = cos(x) / sin(x)
= sin(x) + cos²(x)/sin(x) cancel out the sin(x) factor
= sin²(x)/sin(x) + cos²(x)/sin(x) write both terms with the common denominator of sin(x)
= [ sin²(x) + cos²(x) ] sin(x) add, using the common denominator
= 1 / sin(x) sin²(x) + cos²(x) = 1
= csc(x)