Processing math: 100%
 
+0  
 
0
1595
2
avatar

Sinx + sinxcot^2x=cscx .... Prove this identite!?!?!?!

 Nov 18, 2014

Best Answer 

 #2
avatar+23254 
+5

sin(x) + sin(x)·cot²(x)

= sin(x) + sin(x)·[cos²(x)/sin²(x)]        since cot(x) = cos(x) / sin(x)

= sin(x) + cos²(x)/sin(x)                     cancel out the sin(x) factor

= sin²(x)/sin(x) + cos²(x)/sin(x)          write both terms with the common denominator of sin(x)

= [ sin²(x) +  cos²(x) ] sin(x)              add, using the common denominator

=  1 / sin(x)                                      sin²(x) +  cos²(x)  =  1

= csc(x)

 Nov 18, 2014
 #1
avatar+7188 
0

Sinx+sinxcot2×x=cscxsinx=cscxsinxcot2×x

.
 Nov 18, 2014
 #2
avatar+23254 
+5
Best Answer

sin(x) + sin(x)·cot²(x)

= sin(x) + sin(x)·[cos²(x)/sin²(x)]        since cot(x) = cos(x) / sin(x)

= sin(x) + cos²(x)/sin(x)                     cancel out the sin(x) factor

= sin²(x)/sin(x) + cos²(x)/sin(x)          write both terms with the common denominator of sin(x)

= [ sin²(x) +  cos²(x) ] sin(x)              add, using the common denominator

=  1 / sin(x)                                      sin²(x) +  cos²(x)  =  1

= csc(x)

geno3141 Nov 18, 2014

3 Online Users

avatar
avatar