Loading [MathJax]/jax/output/SVG/config.js
 
+0  
 
0
1735
1
avatar

Solve the logarithmic equation for x. 2 log x = log 2 + log(4x − 6)

 Oct 26, 2014

Best Answer 

 #1
avatar+23254 
+5

The idea will be to get one log on each side and then take the antilog of each side.

2log(x)  =  log(x²)    <--  a multiplier goes inside as an exponent

log(2) + log(4x - 6)  =  log[2(4x-6)]   <-- logs are added when numbers are multiplied

------------------------------------------

2log(x)  =  log(2) + log(4x - 6)

log(x²)  =  log[2(4x-6)] 

Applying the antilog to both sides:

x²  =  2(4x - 6)

x²  =  8x - 12

x² - 8x + 12  =  0

(x - 6)(x - 2)  =  0

x  =  2    or    x  =  6

 Oct 26, 2014
 #1
avatar+23254 
+5
Best Answer

The idea will be to get one log on each side and then take the antilog of each side.

2log(x)  =  log(x²)    <--  a multiplier goes inside as an exponent

log(2) + log(4x - 6)  =  log[2(4x-6)]   <-- logs are added when numbers are multiplied

------------------------------------------

2log(x)  =  log(2) + log(4x - 6)

log(x²)  =  log[2(4x-6)] 

Applying the antilog to both sides:

x²  =  2(4x - 6)

x²  =  8x - 12

x² - 8x + 12  =  0

(x - 6)(x - 2)  =  0

x  =  2    or    x  =  6

geno3141 Oct 26, 2014

2 Online Users

avatar