Loading [MathJax]/jax/output/SVG/config.js
 
+0  
 
0
843
1
avatar

Why is subtraction in Z not associative

 Oct 14, 2014

Best Answer 

 #1
avatar+23254 
+5

The Associative Property for Addition is:  a + ( b + c )  = ( a + b ) + c.

If there were an Associative Property for Subtraction it would have this form:  a - ( b - c )  =  ( a - b ) - c.

The real numbers does not have an Associative Property for Subtraction because of the following counterexample (one of many):   2 - ( 3 - 5 )  ≠  ( 2 - 3 ) - 5

     2 - ( 3 - 5 )  =  2 - ( -2 )  =  2 + 2  =  4

     ( 2 - 3 ) - 5  =  (-1) - 5  =  -6                       and 4  ≠  -6

I'm not certain what Z represents; does it represent complex number? If so, translate the above into complex numbers for a counterexample.

 Oct 14, 2014
 #1
avatar+23254 
+5
Best Answer

The Associative Property for Addition is:  a + ( b + c )  = ( a + b ) + c.

If there were an Associative Property for Subtraction it would have this form:  a - ( b - c )  =  ( a - b ) - c.

The real numbers does not have an Associative Property for Subtraction because of the following counterexample (one of many):   2 - ( 3 - 5 )  ≠  ( 2 - 3 ) - 5

     2 - ( 3 - 5 )  =  2 - ( -2 )  =  2 + 2  =  4

     ( 2 - 3 ) - 5  =  (-1) - 5  =  -6                       and 4  ≠  -6

I'm not certain what Z represents; does it represent complex number? If so, translate the above into complex numbers for a counterexample.

geno3141 Oct 14, 2014

1 Online Users