(1cis60)^1991+(1cis(-60))^1991+1=1 i need to prove this but the calculator wont give me the exact answers
LHS=(cis60)1991+(cis(−60))1991+1=(e60i)1991+(e−60i)1991+1=(e60∗1991∗i)+(e−60∗1991∗i)+1=(cos(60∗1991)+isin(60∗1991))+(cos(−60∗1991)+isin(−60∗1991))+1Nowcos(−θ)=cos(θ)andsin(−θ)=−sin(θ)so=cos(60∗1991)+cos(−60∗1991)+isin(60∗1991)+isin(−60∗1991)+1=cos(60∗1991)+cos(−60∗1991)+i[sin(60∗1991)+sin(−60∗1991)]+1=cos(60∗1991)+cos(60∗1991)+i[sin(60∗1991)−sin(60∗1991)]+1=2cos(60∗1991)+i[0]+1=2cos(60∗1991)+1=2cos(60∗[6∗331+5])+1=2cos(60∗6∗331+60∗5])+1=2cos(360∗331+60∗5)+1=2cos(60∗5)+1=2cos(300)+1=2×12+1=1+1
=2≠1$Theequationisnottrue$
So I agree with Alan's answer.
Using deMoivre's formula:
(1cis60)^1991 = (1^1991)cis(60*1991) = cis(119460) = cis(300) = .5 + -√(3)/2i
(1cis(-60))^1991 = (1^1991)cis(-60*1991) = cis(-119460) = cis(-300) = .5 + √(3)/2i
Adding: .5 + -√(3)/2i + .5 + √(3)/2i = 1 + 0i = 1
Alan's answer is here.
http://web2.0calc.com/questions/cis-for-melody
Alan's and Gino's answers are different.
LHS=(cis60)1991+(cis(−60))1991+1=(e60i)1991+(e−60i)1991+1=(e60∗1991∗i)+(e−60∗1991∗i)+1=(cos(60∗1991)+isin(60∗1991))+(cos(−60∗1991)+isin(−60∗1991))+1Nowcos(−θ)=cos(θ)andsin(−θ)=−sin(θ)so=cos(60∗1991)+cos(−60∗1991)+isin(60∗1991)+isin(−60∗1991)+1=cos(60∗1991)+cos(−60∗1991)+i[sin(60∗1991)+sin(−60∗1991)]+1=cos(60∗1991)+cos(60∗1991)+i[sin(60∗1991)−sin(60∗1991)]+1=2cos(60∗1991)+i[0]+1=2cos(60∗1991)+1=2cos(60∗[6∗331+5])+1=2cos(60∗6∗331+60∗5])+1=2cos(360∗331+60∗5)+1=2cos(60∗5)+1=2cos(300)+1=2×12+1=1+1
=2≠1$Theequationisnottrue$
So I agree with Alan's answer.