Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1
1605
3
avatar

(1cis60)^1991+(1cis(-60))^1991+1=1 i need to prove this but the calculator wont give me the exact answers

 Oct 25, 2014

Best Answer 

 #3
avatar+118703 
+11

LHS=(cis60)1991+(cis(60))1991+1=(e60i)1991+(e60i)1991+1=(e601991i)+(e601991i)+1=(cos(601991)+isin(601991))+(cos(601991)+isin(601991))+1Nowcos(θ)=cos(θ)andsin(θ)=sin(θ)so=cos(601991)+cos(601991)+isin(601991)+isin(601991)+1=cos(601991)+cos(601991)+i[sin(601991)+sin(601991)]+1=cos(601991)+cos(601991)+i[sin(601991)sin(601991)]+1=2cos(601991)+i[0]+1=2cos(601991)+1=2cos(60[6331+5])+1=2cos(606331+605])+1=2cos(360331+605)+1=2cos(605)+1=2cos(300)+1=2×12+1=1+1

=21$Theequationisnottrue$

 

So I agree with Alan's answer.    

 Oct 26, 2014
 #1
avatar+23254 
+6

Using deMoivre's formula:

(1cis60)^1991  =  (1^1991)cis(60*1991)  =  cis(119460)  =  cis(300)  =  .5 + -√(3)/2i

(1cis(-60))^1991  =  (1^1991)cis(-60*1991)  =  cis(-119460)  =  cis(-300)  =  .5 + √(3)/2i

Adding:   .5 + -√(3)/2i  +  .5 + √(3)/2i  = 1 + 0i  =  1

 Oct 25, 2014
 #2
avatar+118703 
+1

Alan's answer is here.

http://web2.0calc.com/questions/cis-for-melody

Alan's and Gino's answers are different.   

 Oct 26, 2014
 #3
avatar+118703 
+11
Best Answer

LHS=(cis60)1991+(cis(60))1991+1=(e60i)1991+(e60i)1991+1=(e601991i)+(e601991i)+1=(cos(601991)+isin(601991))+(cos(601991)+isin(601991))+1Nowcos(θ)=cos(θ)andsin(θ)=sin(θ)so=cos(601991)+cos(601991)+isin(601991)+isin(601991)+1=cos(601991)+cos(601991)+i[sin(601991)+sin(601991)]+1=cos(601991)+cos(601991)+i[sin(601991)sin(601991)]+1=2cos(601991)+i[0]+1=2cos(601991)+1=2cos(60[6331+5])+1=2cos(606331+605])+1=2cos(360331+605)+1=2cos(605)+1=2cos(300)+1=2×12+1=1+1

=21$Theequationisnottrue$

 

So I agree with Alan's answer.    

Melody Oct 26, 2014

2 Online Users

avatar