Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1263
5
avatar

an=(n+1)/(2n+3) find the " n " in this que
an-an-1=1/99

 Oct 15, 2014

Best Answer 

 #3
avatar+26396 
+10

an=(n+1)/(2n+3) find the " n " in this que
an-an-1=1/99

an=n+12n+3 and anan1=199

n+12n+3(n1)+12(n1)+3=199n+12n+3n2n+1=199(2n+1)(n+1)n(2n+3)(2n+3)(2n+1)=199(2n+3)(2n+1)=99[(2n+1)(n+1)n(2n+3)](2n+3)(2n+1)=99(2n+1)(n+1)99n(2n+3)]4n2+2n+6n+3=99(2n2+2n+n+1)99(2n2+3n)4n2+8n+3=99(2n2+3n)+9999(2n2+3n)4n2+8n+3=994n2+8n96=0|:4n2+2n24=0n1,2=2±44(24)2n1,2=2±1002n=2+102n=82n=4

 Oct 16, 2014
 #1
avatar+23254 
+5

What is meant by "an"?

What is "an-an-1=1/99"?

 Oct 15, 2014
 #2
avatar+118703 
+10

Maybe

Chris is teaching me the science of forensic mathematics  - How did I do Chris?     LOL

 

an=(n+1)/(2n+3)anan1=1/99soan1=(n1+1)/(2(n1)+3)an1=n/(2n+1)soanan1=1/99n+12n+3n2n+1=19999(n+1)(2n+1)99n(2n+3)=(2n+3)(2n+1)etc

If you want me to continue, just ask.    

 Oct 16, 2014
 #3
avatar+26396 
+10
Best Answer

an=(n+1)/(2n+3) find the " n " in this que
an-an-1=1/99

an=n+12n+3 and anan1=199

n+12n+3(n1)+12(n1)+3=199n+12n+3n2n+1=199(2n+1)(n+1)n(2n+3)(2n+3)(2n+1)=199(2n+3)(2n+1)=99[(2n+1)(n+1)n(2n+3)](2n+3)(2n+1)=99(2n+1)(n+1)99n(2n+3)]4n2+2n+6n+3=99(2n2+2n+n+1)99(2n2+3n)4n2+8n+3=99(2n2+3n)+9999(2n2+3n)4n2+8n+3=994n2+8n96=0|:4n2+2n24=0n1,2=2±44(24)2n1,2=2±1002n=2+102n=82n=4

heureka Oct 16, 2014
 #4
avatar+130466 
+5

Good job by Melody and heureka....points for both........maybe some of my detective work is rubbing off on Melody ..... LOL!!!

 

 

 Oct 16, 2014
 #5
avatar+118703 
0

Thanks Chris  :)

 Oct 16, 2014

0 Online Users