Processing math: 100%
 
+0  
 
0
988
4
avatar+4 

Is there a way to define a variable to use an equation? E.x.: 3x^2-2x+5=y, and I want to assign x a value without changing it out. Is it possible?

 Dec 12, 2014

Best Answer 

 #3
avatar+118704 
+10

Welcome to web2.0calc forum Catboy13  

Umm - Interesting question.  

 

\begin{array}{rll} 3x^2-2x+5&=&y\\\\ 3x^2-2x&=&y-5\\\\ x^2-\frac{2}{3}x&=&\frac{y-5}{3}\\\\ x^2-\frac{2}{3}x+\left(\frac{2}{6}\right)^2&=&\frac{y-5}{3}+\left(\frac{2}{6}\right)^2\\\\ x^2-\frac{2}{3}x+\left(\frac{1}{3}\right)^2&=&\frac{y-5}{3}+\left(\frac{1}{3}\right)^2\\\\ x^2-\frac{2}{3}x+\left(\frac{1}{3}\right)^2&=&\frac{3(y-5)}{9}+\frac{1}{9}\\\\ \left(x-\frac{1}{3}\right)^2&=&\frac{3y-15+1}{9}\\\\ \left(x-\frac{1}{3}\right)^2&=&\frac{3y-14}{9}\\\\ x-\frac{1}{3}&=&\pm\sqrt{\frac{3y-14}{9}}\\\\ x&=&\frac{1}{3}\pm\sqrt{\frac{3y-14}{9}}\\\\ x&=&\frac{1\pm\sqrt{3y-14}}{3}}\\               \end{array}

 Dec 13, 2014
 #1
avatar+7188 
0

I believe it is possible....but I might be wrong...

 Dec 12, 2014
 #2
avatar
0

If you first define a function f as

f(x)=3×x22×x+5

 

then for any particular x the function f(x) has a value and you can write things such as

f(2) + f(0) - 4 = 14

 Dec 12, 2014
 #3
avatar+118704 
+10
Best Answer

Welcome to web2.0calc forum Catboy13  

Umm - Interesting question.  

 

\begin{array}{rll} 3x^2-2x+5&=&y\\\\ 3x^2-2x&=&y-5\\\\ x^2-\frac{2}{3}x&=&\frac{y-5}{3}\\\\ x^2-\frac{2}{3}x+\left(\frac{2}{6}\right)^2&=&\frac{y-5}{3}+\left(\frac{2}{6}\right)^2\\\\ x^2-\frac{2}{3}x+\left(\frac{1}{3}\right)^2&=&\frac{y-5}{3}+\left(\frac{1}{3}\right)^2\\\\ x^2-\frac{2}{3}x+\left(\frac{1}{3}\right)^2&=&\frac{3(y-5)}{9}+\frac{1}{9}\\\\ \left(x-\frac{1}{3}\right)^2&=&\frac{3y-15+1}{9}\\\\ \left(x-\frac{1}{3}\right)^2&=&\frac{3y-14}{9}\\\\ x-\frac{1}{3}&=&\pm\sqrt{\frac{3y-14}{9}}\\\\ x&=&\frac{1}{3}\pm\sqrt{\frac{3y-14}{9}}\\\\ x&=&\frac{1\pm\sqrt{3y-14}}{3}}\\               \end{array}

Melody Dec 13, 2014
 #4
avatar+118704 
0

I have added this to the Sticky Topic - "Great Answers to Learn From"

 Dec 14, 2014

0 Online Users