Loading [MathJax]/jax/output/SVG/config.js
 
+0  
 
0
631
1
avatar

How long would it take money deposited in an account earning 2.8% per year, compounded quarterly, to double?

 Oct 14, 2014

Best Answer 

 #1
avatar+23254 
+5

The compound interest formula is:  A  = P(1 + r/n)^(n·t)

where          A = final amount          P = amount invested        r = rate (as a decimal)

                   n = number of times compounded per year          t = number of years

You can choose any number that you want for P; I will choose 1.  (This procedure works for any number that you choose for P.)                 The value of A is twice that of P, so A = 2             r = .028              n = 4

Substituting:  2  =  1(1 + .028/4)^(4t)     --->     2  =  (1.007)^(4t)

Since your unknown is in an exponent, use logs:    log(2)  =  log[(1.007)^4t]

An exponent in a log comes out as a multiplier:      log(2)  =  4t·log(1.007)

                                                                          log(2) / log(1.007)  =  4t

                                                                         t  =  [ log(2) / log(1.007) ] ÷ 4

t  ≈ 24.8 years

 Oct 14, 2014
 #1
avatar+23254 
+5
Best Answer

The compound interest formula is:  A  = P(1 + r/n)^(n·t)

where          A = final amount          P = amount invested        r = rate (as a decimal)

                   n = number of times compounded per year          t = number of years

You can choose any number that you want for P; I will choose 1.  (This procedure works for any number that you choose for P.)                 The value of A is twice that of P, so A = 2             r = .028              n = 4

Substituting:  2  =  1(1 + .028/4)^(4t)     --->     2  =  (1.007)^(4t)

Since your unknown is in an exponent, use logs:    log(2)  =  log[(1.007)^4t]

An exponent in a log comes out as a multiplier:      log(2)  =  4t·log(1.007)

                                                                          log(2) / log(1.007)  =  4t

                                                                         t  =  [ log(2) / log(1.007) ] ÷ 4

t  ≈ 24.8 years

geno3141 Oct 14, 2014

2 Online Users