Processing math: 100%
 
+0  
 
0
31
1
avatar+1266 

Determine the coordinates of the point $P$ on the line $y=-x+6$ such that $P$ is equidistant from the points $A(10,-12)$ and $O(2,8)$ (that is, so that $PA=PO$). Express your answer as an ordered pair $(a,b)$.

 May 13, 2024
 #1
avatar+9675 
0

Let P=(x,x+6). We have

Note that mAO=8(12)210=52. So the slope of perpendicular bisector of AO is 25.

Midpoint of AO is (10+22,12+82)=(6,2). Since PA = PO, P lies on the perpendicular bisector of AO. Then,

 

(x+6)(2)x6=255(8x)=2(x6)405x=2x1252=7xx=527

 

The point is (527,527+6)=(527,107).

 May 13, 2024

2 Online Users

avatar