Let $a$ and $b$ be real numbers, where $a < b$, and let $A = (a,a^2)$ and $B = (b,b^2)$. The line $\overline{AB}$ (meaning the unique line that contains the point $A$ and the point $B$) has slope $2$. Find $a + b$.
Find a + b.
mAB=2=yb−yaxb−xa=b2−a2b−a=(b+a)(b−a)b−a=b+aa+b=2
!