Processing math: 100%
 
+0  
 
0
2102
1
avatar+1348 

The back of Dante's property is a creek. Dante would like to enclose a rectangular area, using the creek as one side and fencing for the other three sides, to create a corral. If there is 760 feet of fencing available, what is the maximum possible area of the corral?

 Feb 10, 2020
 #1
avatar+15117 
+1

The back of Dante's property is a creek. Dante would like to enclose a rectangular area, using the creek as one side and fencing for the other three sides, to create a corral. If there is 760 feet of fencing available, what is the maximum possible area of the corral?

 

Hello sandwich!

 

A=aba+2b=760 ft2b=760 ftab=380 fta2

A=f(a)=a(380 fta2)A=f(a)=a22+380 ftaA=df(a)da=a+380 ft=0

a=380 ftb=380 fta2=380 ft190 ftb=190 ft

 

 

Dante creates a rectangular field 380ft * 190ft.

laugh  !

 Feb 10, 2020
edited by asinus  Feb 10, 2020

1 Online Users

avatar