Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
723
3
avatar

What would  x^6-y^6 be when completely factored?

 Nov 21, 2014

Best Answer 

 #2
avatar+26396 
+10

What would  x^6-y^6 be when completely factored?

a3+b3=(a+b)(a2ab+b2)a3b3=(ab)(a2+ab+b2)(a6b6)=(a3+b3)(a3b3)=(a+b)(a2ab+b2)(ab)(a2+ab+b2)

a=x and b=y(x6y6)=(x+y)(x2xy+y2)(xy)(x2+xy+y2)

 Nov 21, 2014
 #1
avatar+23254 
+5

There are a few factoring forms worth knowing, three of which are:

--- Difference of squares:  A² - B²  =  (A + B)(A - B)

--- Difference of cubes:     A³ - B³  =  (A - B)(A² + AB + B²)

--- Sum of cubes:             A³ + B³  =  (A + B)(A² - AB + B²)

In  x^6 - y^6,  first use difference of squares:

  =  (x³)² - (y³)²  to get:  (x³ + y³)(x³ - y³)    

Now use both sum of cubes and difference of cubes:

  =  [ (x - y)(x² + xy + y²) ][ (x + y)(x² - xy + y²) ]

  =  (x - y)(x + y)(x² + xy + y²)(x² - xy + y²)

 Nov 21, 2014
 #2
avatar+26396 
+10
Best Answer

What would  x^6-y^6 be when completely factored?

a3+b3=(a+b)(a2ab+b2)a3b3=(ab)(a2+ab+b2)(a6b6)=(a3+b3)(a3b3)=(a+b)(a2ab+b2)(ab)(a2+ab+b2)

a=x and b=y(x6y6)=(x+y)(x2xy+y2)(xy)(x2+xy+y2)

heureka Nov 21, 2014
 #3
avatar
0

Thank you!

 Nov 21, 2014

0 Online Users