Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
773
3
avatar

nC2=1/4[n+2C2]

 Jun 11, 2016
 #1
avatar
0

nC2=1/4[n+2C2]

 

If by "nC2", you mean " Combinations of n objects 2 at a time", then there is no " natural number n" solution! It looks like something you made up on the fly!!.

 Jun 11, 2016
 #2
avatar+9675 
0

nC2=n+2C24

4(n!(2)[(n2)!])=n+1

2n(n1)=n+1

2n22n=n+1

2n23n1=0

Using quad. formula,

n=(3)±(3)24(2)(1)2(2)

n=3+174 or n=3174

There are no natural number solutions but some real number solutions.

 Jun 12, 2016
 #3
avatar+9675 
0

Or you mean nC2=14[n+2C2]?

I will solve this one for you

nC2=14(n+2C2)

4(n+1)=((2!)(n2)!)n!

4(n+1)=2(n)(n1)

2(n+1)(n1)(n)=1

2n32n1=0

We will use the cubic equation.

First Δ0=023(2)(2)=0+12=12

ThenΔ1=2(0)39(2)(0)(2)+27(2)2(1)=0+0108=108

C=3(Δ1)24(Δ0)3+Δ12=3(108)24(12)31082=6464432

u=1+3i2

u1C=(3i1)(64644)316

u2C=(3i12)2(6464432)=(13i2)(6464432)=(1+3i)(64644)316

u3C=((1+3i2)3)(6464432)=6464432

n1=0+(3i1)(64644)316+12(3i1)(64644)3166

This is definitely not a natural number XD

n2=0(1+3i)(64644)316+12(1+3i)(64644)3166

This is still not a natural number XD

n3=6464432+1264644326

This is not a natural number :(

LOL This no natural solution.

Sorry i have gone a bit crazy solving that cubic eq.

 Jun 12, 2016

1 Online Users

avatar