Loading [MathJax]/jax/output/SVG/config.js
 
+0  
 
0
1
1
avatar+402 

In trapezoid EFGH, \overline{EF} \parallel \overline{GH}, and P is the point on \overline{EH} such that EP:PH = 1:2. If the area of triangle PEF is 6, and the area of triangle PGH is 6, then find the area of trapezoid EFGH.

 Jan 2, 2025
 #1
avatar+130133 
+1

 E                           F

 

 M P 

 

 

 N     H                G

 

Let EN  be the height

Triangle ENH is right

Since EP : PH  = 1 : 2

Then EN = 1 / ( 1 + 2) * height  = 1/3  height of trapezoid

So height of triangle PGH =  2/3 height of trapezoid

 

 

[ EPF] =  (1/2)EF * (1/3) height →   EF * height / 6  =  6  → EF =  36 / height

 

[ PGH ]  =  (1/2)GH * (2/3) height   =  EF * height  / 3  = 6 →  GH = 18 / height

 

[ EFGH ]  =  (1/2) height * [ 36 / height + 18 / height ]  =   (1/2) height [ 54 / height ] =

 

54 / 2  =   27

 

 

cool cool cool

 Jan 2, 2025

2 Online Users

avatar