Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
39
1
avatar+2729 

(1) Let a_1, a_2, a_3 be real numbers such that
|a_1 - a_2| + 2 |a_2 - a_3| + 3 |a_3 - a_1| = 1.
What is the largest possible value of |a_1 - a_2|?


(2) Let a_1, a_2, a_3, \dots, a_{10} be real numbers such that
|a_1 - a_2| + 2 |a_2 - a_3| + 3 |a_3 - a_4| + 4 |a_4 - a_5 | + \dots + 9 |a_9 - a_{10}| + 10 |a_{10} - a_1| = 1.
What is the largest possible value of |a_1 - a_6|?

 Mar 9, 2024

Best Answer 

 #1
avatar+410 
+4

1)

To simplify this equation, we want to eliminate some of the terms. Set 

x=a1a2

y=a2a3

Therefore:

a3a1=(a1a3)=(x+y)=xy.

Now our equation is:

|x|+2|y|+3|xy|=1

|x|+2|y|+3|x+y|=1.

One way to approach this is by graphing. 

We split this into 3 sections:

One for x0,x<0

y0,y<0

For |x+y| we have

x>y,x<y.

Here is a graph, with x=0,y=0,x=y labeled. (The green one is |x|+2|y|+3|x+y|=1).

We see the largest possible value of |x| in this graph is 13.

Therefore, the maximum value is |a1a2|=13.

 Mar 9, 2024
edited by hairyberry  Mar 9, 2024
 #1
avatar+410 
+4
Best Answer

1)

To simplify this equation, we want to eliminate some of the terms. Set 

x=a1a2

y=a2a3

Therefore:

a3a1=(a1a3)=(x+y)=xy.

Now our equation is:

|x|+2|y|+3|xy|=1

|x|+2|y|+3|x+y|=1.

One way to approach this is by graphing. 

We split this into 3 sections:

One for x0,x<0

y0,y<0

For |x+y| we have

x>y,x<y.

Here is a graph, with x=0,y=0,x=y labeled. (The green one is |x|+2|y|+3|x+y|=1).

We see the largest possible value of |x| in this graph is 13.

Therefore, the maximum value is |a1a2|=13.

hairyberry Mar 9, 2024
edited by hairyberry  Mar 9, 2024

5 Online Users

avatar
avatar
avatar