subtract 43 with 28, which is 15, and then multiply that by 1.6, and that is 24. after that, add 24 with 24 so g_43 = 48. Idk if this is right or wrong, I tried something else but the logic was wrong
By the property of geometric sequences, g43=g1×d42.
Note that g28=g23×d5. Substituting the given values, we have: 28=16d5, meaning d=5√74.
Now, notice that g43=g28×d15.
We know that 5√74=743=34364
This means that d43=28×34364=150116
I did not get either of these answers.
ar22=16andar27=24 ar27ar22=2416r5=32 r=(32)1/5 ar22=16 a=16∗(23)22/5 g43=ar42 g43=16∗(23)22/5((32)1/5)42 g43=24∗222/5∗342/5322/5∗242/5 g43=24∗320/5220/5 g43=24∗3424 g43=34 g43=81
LaTex
ar^{22}=16\qquad and \qquad ar^{27}=24\\~\\
\frac{ar^{27}}{ar^{22}}=\frac{24}{16}\\
r^5=\frac{3}{2}\\~\\
r=\left( \frac{3}{2} \right)^{1/5} \\~\\
ar^{22}=16\\~\\
a=16*\left( \frac{2}{3} \right)^{22/5} \\~\\
g_{43}=ar^{42}\\~\\
g_{43}=16*\left( \frac{2}{3} \right)^{22/5} \left(\left( \frac{3}{2} \right)^{1/5}\right)^{42}\\~\\
\displaystyle g_{43}=\frac{2^4*2^{22/5}*3^{42/5}}{3^{22/5}*2^{42/5}}\\~\\
\displaystyle g_{43}=\frac{2^4*3^{20/5}}{2^{20/5}}\\~\\
\displaystyle g_{43}=\frac{2^4*3^{4}}{2^4}\\~\\
\displaystyle g_{43}=3^4\\~\\
\displaystyle g_{43}=81\\~\\