Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1563
5
avatar+576 

I'm trying to take an integral bounded below by zero and above by alpha of the sqrt(1-x^2) 

I think It is a trig sub but the answer I keep getting is ridiculous.  Any suggestions are appreciated.

 Jun 24, 2014

Best Answer 

 #5
avatar+26396 
+11

I'm trying to take an integral bounded below by zero and above by alpha of the sqrt(1-x^2) :

x=αx=01x2 dx?

Substitute x only:   x = sin(z)   and    dx = cos(z) dz

x=αx=01sin2(z)cos(z) dxcos(z) dz=x=αx=0cos2(z) dz

Product rule (uv)' = u'v+uv'

u =sin(z)     v =cos(z)

u'=cos(z)     v'=-sin(z)

\textstyle{\left \textcolor[rgb]{1,0,0}{(} \sin{(z)}\cos{(z)} \right\textcolor[rgb]{1,0,0}{)'}=\cos{(z)}*\cos{(z)}+\sin{(z)}(-\sin{(z)})=\cos^2{(z)}-\sin^2{(z)}}

sin2(z)=1cos2(z)

\textstyle{\left \textcolor[rgb]{1,0,0}{(} \sin{(z)}\cos{(z)} \right\textcolor[rgb]{1,0,0}{)'}   =cos^2{(z)}-(1-cos^2{(z)}}) =-1+2\cos^2{(z)}

2\cos^2{(z)}=1+ \left \textcolor[rgb]{1,0,0}{(} \sin{(z)}\cos{(z)} \right\textcolor[rgb]{1,0,0}{)'} \quad | \quad \int

2cos2(z) dz= dzz+sin(z)cos(z)

cos2(z) dz=12(z+sin(z)cos(z))

Back substitute:

z=sin1(x)sin(z)=xcos(z)=1x2

\begin{array}{rcl}  \int\limits_{x=0}^{x=\alpha } \sqrt{1-x^2}\ dx &=&  \left[  \dfrac{1}{2}  \left(  \sin^{-1}{(x)}+x\sqrt{1-x^2}  \right)  }  \right]^{x=\alpha}_{x=0}\\\\  &=&\frac{1}{2}  \left(\;  \sin^{-1}{(\alpha)}+\alpha\sqrt{1-\alpha^2}  \;\right)      \end{array}

 Jun 25, 2014
 #1
avatar+118703 
+5

I don't know but I found this on the web.

http://math.stackexchange.com/questions/533082/integral-of-sqrt1-x2-using-integration-by-parts

Maybe it will help you?

 Jun 24, 2014
 #2
avatar+576 
0

That's pretty nifty. Thanks!

 Jun 24, 2014
 #3
avatar+33654 
+10

Here's the trig substitution approach:

integral

 Jun 24, 2014
 #4
avatar+576 
0

Looks like i totally blew the first step in my own work by not using a substitution for dx!  wow!  Thanks!

 Jun 24, 2014
 #5
avatar+26396 
+11
Best Answer

I'm trying to take an integral bounded below by zero and above by alpha of the sqrt(1-x^2) :

x=αx=01x2 dx?

Substitute x only:   x = sin(z)   and    dx = cos(z) dz

x=αx=01sin2(z)cos(z) dxcos(z) dz=x=αx=0cos2(z) dz

Product rule (uv)' = u'v+uv'

u =sin(z)     v =cos(z)

u'=cos(z)     v'=-sin(z)

\textstyle{\left \textcolor[rgb]{1,0,0}{(} \sin{(z)}\cos{(z)} \right\textcolor[rgb]{1,0,0}{)'}=\cos{(z)}*\cos{(z)}+\sin{(z)}(-\sin{(z)})=\cos^2{(z)}-\sin^2{(z)}}

sin2(z)=1cos2(z)

\textstyle{\left \textcolor[rgb]{1,0,0}{(} \sin{(z)}\cos{(z)} \right\textcolor[rgb]{1,0,0}{)'}   =cos^2{(z)}-(1-cos^2{(z)}}) =-1+2\cos^2{(z)}

2\cos^2{(z)}=1+ \left \textcolor[rgb]{1,0,0}{(} \sin{(z)}\cos{(z)} \right\textcolor[rgb]{1,0,0}{)'} \quad | \quad \int

2cos2(z) dz= dzz+sin(z)cos(z)

cos2(z) dz=12(z+sin(z)cos(z))

Back substitute:

z=sin1(x)sin(z)=xcos(z)=1x2

\begin{array}{rcl}  \int\limits_{x=0}^{x=\alpha } \sqrt{1-x^2}\ dx &=&  \left[  \dfrac{1}{2}  \left(  \sin^{-1}{(x)}+x\sqrt{1-x^2}  \right)  }  \right]^{x=\alpha}_{x=0}\\\\  &=&\frac{1}{2}  \left(\;  \sin^{-1}{(\alpha)}+\alpha\sqrt{1-\alpha^2}  \;\right)      \end{array}

heureka Jun 25, 2014

0 Online Users