Loading [MathJax]/jax/output/SVG/config.js
 
+0  
 
0
3
3328
1
avatar

How can i find the first term of a geometric sequence when the common ratio is 3 and the fifth term is 972

 Dec 17, 2014

Best Answer 

 #1
avatar+23254 
+5

A formula for the nth term of a geometric sequence is:  tn  =  a·rn-1  

     where a is the first term, n is the number of the term, and r is the common ratio.

If the fifth term is 972 and the common ratio is 3  --->   t5  =  972 and r = 3:   

     t5  =  a·35-1   --->     972  =  a·34   --->   972  =  a·81   --->   a  =  972/81  =  12

 Dec 17, 2014
 #1
avatar+23254 
+5
Best Answer

A formula for the nth term of a geometric sequence is:  tn  =  a·rn-1  

     where a is the first term, n is the number of the term, and r is the common ratio.

If the fifth term is 972 and the common ratio is 3  --->   t5  =  972 and r = 3:   

     t5  =  a·35-1   --->     972  =  a·34   --->   972  =  a·81   --->   a  =  972/81  =  12

geno3141 Dec 17, 2014

1 Online Users

avatar