Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1542
4
avatar

how to solve this

limsin(a+x)sin(ax)xx0

math trigonometry
 Aug 25, 2014

Best Answer 

 #3
avatar+33654 
+5

sin(a+x) expansion

.
 Aug 25, 2014
 #1
avatar+33654 
+5

Expand sin(a+x) as a series in x:  

sin(a+x) = sin(a) + x*cos(a) + higher order terms involving multiples of x.

 

Similarly:

sin(a-x) = sin(x) - x*cos(a) + higher order terms

 

Therefore, sin(a+x) - sin(a-x) = 2x*cos(a) + higher order terms

 

(sin(a+x) - sin(a-x))/x = 2cos(a) + higher order terms.

 

The higher order terms all contain multiples of x, so when x goes to zero, these go to zero and we are left with:

limx0sin(a+x)sin(ax)x=2cos(a)

 Aug 25, 2014
 #2
avatar+118703 
0

I do not know this expansion Alan.  

 Aug 25, 2014
 #3
avatar+33654 
+5
Best Answer

sin(a+x) expansion

Alan Aug 25, 2014
 #4
avatar+118703 
0

Thanks Alan. 

 Aug 25, 2014

1 Online Users