Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
745
6
avatar+89 

(d) Differentiate each of the following functions and find the value of the derivative when x = 1:

(i) f(x) = 1−x3(5 ln(x) + 2),

(ii) g(x) = 1 + xex 1 + x2 ,

(iii) h(x) = √1 + x2.

 

(e) Let f(x) = x3 + 3x2 −24x + 5.

(i) Find f0(x) and f00(x).

(ii) Determine the critical points of f.

(iii) Show that x = −4 is a local maximum of f.

(iv) Show that x = 2 is a local minimum of f

 Aug 9, 2016

Best Answer 

 #5
avatar+9675 
+5

g(1)=(e1)((1+12)(1+1)+2(1)2)=6e

.
 Aug 10, 2016
 #1
avatar+9675 
+5

ddx(1x3(5lnx+2))

=ddx1ddx5x3lnx+ddx2x3

=ddx2x3(5x3)ddxlnx(lnx)ddx5x3

=6x2(5x3)(1x)(lnx)(15x2)

=6x25x215x2lnx

=x215x2lnx

.
 Aug 10, 2016
 #4
avatar+9675 
+5

f(1)=1215(1)2(ln1)=1

MaxWong  Aug 10, 2016
 #2
avatar+9675 
+5

ddx(1+xex(1+x2))

=ddx1+(1+x2)ddxxex+(xex)ddx(1+x2)

=(1+x2)(ex)(1+x)+(x)(ex)(2x)

=(ex)((1+x2)(1+x)+2x2)

.
 Aug 10, 2016
 #5
avatar+9675 
+5
Best Answer

g(1)=(e1)((1+12)(1+1)+2(1)2)=6e

MaxWong  Aug 10, 2016
 #3
avatar+9675 
+5

ddx1+x2h=uu=1+x2dhdx=dhdu×dudx=121+x2×2x=x1+x2

.
 Aug 10, 2016
 #6
avatar+9675 
+5

h(1)=11+12=22

MaxWong  Aug 10, 2016

0 Online Users