integrate x/(2+x)
∫[ x/(2 + x) ] dx
Let u = 2 + x ---> x = u - 2 and du = dx
∫[ x/(2 + x) ] dx ---> ∫[ (u - 2)/u ] du ---> ∫[ u/u - 2/u ]du ---> ∫1 du - 2∫1/u du
---> u - 2 ln|u| + C ---> 2 + x - 2 ln| 2 + x | + C
Hi Geno,
why have you used ln|u| instead of ln(u) ?
The general integral of 1/x is ln|x| because ln() must contain a positive value.
If we know that x is positive, we don't need the absolute value bars.
∫1xdx
If x is positive we both agree that the answer is ln(x) +c
If x is negative the answer should be -ln(-x)+c OR -ln|x|+c shouldn't it ?