Processing math: 100%
 
+0  
 
0
352
3
avatar+349 

using integration by parts, find [ln(x)]2dx

 Jun 19, 2022
 #1
avatar+118703 
+1

Hint:

the integral is lnx =   the integral of (1*lnx)  

do that first.

You need to use integration by parts twice.

 

 

I have not done it, I don't have time at present, but that is how I would proceed.

 Jun 19, 2022
 #3
avatar+118703 
+1

\displaystyle \int [ln(x)]^2 dx

 

[ln(x)]2dx=[ln(x)][ln(x)]dxu=lnxv=lnxu=1xv=? [ln(x)]dx=1[ln(x)]dxp=lnxq=1p=1xq=xso1[ln(x)]dx=xlnx1xxdx=xlnx1dx=xlnxx So v=xlnx-x 

Going back to the beginning

 

[ln(x)]2dx=[ln(x)][ln(x)]dxu=lnxv=lnxu=1xv=xlnxx =uvvudx+c

 

And you can finish it 

 

 

LaTex:

\displaystyle \int [ln(x)]^2 dx\\
=\displaystyle \int [ln(x)]  [ln(x)] dx\\
u=lnx\qquad v'=lnx\\
u'=\frac{1}{x}\qquad v=?\\~\\
---------------------\\
\displaystyle \int [ln(x)] dx\\
=\displaystyle \int 1*[ln(x)] dx\\
p=lnx\qquad q'=1\\
p'=\frac{1}{x}\qquad q=x\\
so\\
\displaystyle \int 1*[ln(x)] dx\\
=xlnx-\int \frac{1}{x}*x\;dx\\
=xlnx-\int 1\;dx\\
=xlnx-x\\~\\
\text {So v=xlnx-x}\\~\\
----------------\\

Melody  Jun 20, 2022
 #2
avatar+9675 
+1

(lnx)2dx=x(lnx)2xd((lnx)2)=x(lnx)2x2lnxxdx=x(lnx)22lnxdx=x(lnx)22(xlnxxd(lnx))=

 

I will leave the rest to you.

 Jun 20, 2022

4 Online Users

avatar