Loading [MathJax]/jax/output/SVG/config.js
 
+0  
 
0
831
1
avatar

Let f(x) = x^2 + 4x - 31. For what value of a is there exactly one real value of x such that f(x) = a?

 Nov 6, 2014
 #1
avatar+23254 
0

A quadratic formula, when graphed, becomes a parabola. It will have two values from every value of x except for the vertex.

So, the problem becomes:  find the vertex.

This can be done by graphing, by completing the square, or by using this formula:  x  =  -b / (2a).

Because you have the function in the form:  f(x)  =  ax² + bx + c   --->  a = 1, b = 4, c = -31

 --->    x  =  -b / (2a)   --->   x  =  -4 / (2·1)  =  -2

The x-value of the vertex occurs when  x = -2, now:   f(-2)  =  (-2)² + 4(-2) - 31  =  -35 

This value, -35, is the answer that you are looking for.

 Nov 6, 2014

3 Online Users

avatar
avatar