Find the modular inverse of 27, modulo 29. Express your answer as an integer from 0 to 28, inclusive.
27A=1(mod29)27A=−29N+129N+27A=1 29=1(27)+227=13(2)+127−13(2)=127−13(29−1(27))=127−13(29)+13(27)=114(27)−13(29)=127∗14=1(mod29)
So the modular inverse of 27 mod 29 is 14