Loading [MathJax]/jax/element/mml/optable/MathOperators.js
 
+0  
 
0
1293
6
avatar+249 

1. Let a1(mod4). Find the value of 6a + 5 (mod 4). Express your answer as a residue between 0 and the modulus.

 

2. We are given that a4 and that a242(mod10). Find the value of a. Express your answer as a residue between 0 and the modulus.

 

3. Let a0 and a20(mod12). What is the value of a? Express your answer as a residue between 0 and the modulus.

 

4. Given a1(mod7),b2(mod7) , and c6(mod7), what is the remainder when a81b91c27 is divided by 7?

 Aug 1, 2016
 #1
avatar+118703 
0

1. Let  a1(mod4)

Find the value of 6a + 5 (mod 4). Express your answer as a residue between 0 and the modulus.

6a + 5 (mod 4)

=(6*1 + 5) (mod 4)

=11(mod4)            

            11/4=2R3      or      3R-1

= 3 or -1  (mod4)

 Aug 2, 2016
 #2
avatar+26396 
+5

4. Given

a1(mod7),

b2(mod7),

and

c6(mod7),

what is the remainder when

a81b91c27

is divided by 7?

 

a1=7lora=7l+1b2=7morb=7m+2c6=7norc=7n+6

 

a81b91c27(mod7)(7l+1)81(7m+2)91(7n+6)27(mod7)[(810)(7l)81+(811)(7l)80++(8181)181][(910)(7m)91+(911)(7m)90++(9191)291][(270)(7n)27+(271)(7n)26++(2727)627](mod7)(8181)181(9191)291(2727)627(mod7)181291627(mod7)1291627(mod7)291627(mod7)

 

Because gcd(2,7)=12φ(7)1(mod7)φ(7)=6261(mod7)Because gcd(6,7)=16φ(7)1(mod7)φ(7)=6661(mod7)

 

a81b91c27(mod7)291627(mod7)2615+1664+3(mod7)2615266463(mod7)(26)152(66)463(mod7)261(mod7)(1)152(66)463(mod7)661(mod7)(1)152(1)463(mod7)12163(mod7)263(mod7)2216(mod7)432(mod7)5(mod7)

 

The remainder is 5

 

laugh

 Aug 2, 2016
 #3
avatar+118703 
0

4) \;\;Given\;\; a \equiv 1 \pmod{7},\;\;and\;\; b \equiv 2 \pmod{7} \'\'and\;\; c \equiv 6 \pmod{7} \mbox { what is the remainder when }  a^{81} b^{91} c^{27}   \mbox{is divided by 7}\?

 

4)Givena1(mod7),andb2(mod7)andc6(mod7) what is the remainder when a81b91c27is divided by 7?

 

Thanks   Heureka,

I have just finsihed Q4 too and I think our answers are fairly similar but I would like to post mine anyway :)

a=7p+1

b=7q+2

c=7r+6

p,q,r are integers

 

a81=(7p+1)81=181+81(7p)1+81C2(7p)2.........+(7p)81

The only term here that is NOT a multiple of 7 is 1   and 1mod7=1

 

Using the same logic

(7q+2)91(mod7)=291(mod7)=2109+1(mod7)=(210)92(mod7)=(1024)92(mod7)=(2)92(mod7)=12(mod7)=2(mod7)

 

and

 

(7r+6)27(mod7)=627(mod7)=((63)3)3(mod7)=(2163)3(mod7)=(6)3(mod7)=6(mod7)

 

so

 

a81b91c27(mod7)=126(mod7)=12(mod(7)=5(mod7)

 

The remainder will be 5     Just like Heureka aready told us :)

 Aug 2, 2016
 #4
avatar+9675 
0

2)

a216(mod10)a26(mod10)a2=¯X6<- This notation means 10X + 6 where 1X9In 1 - 10 there are only 2 numbers whose squares end with 6, namely 4 and 6

.
 Aug 2, 2016
edited by MaxWong  Aug 2, 2016
 #5
avatar+9675 
0

.
 Aug 2, 2016
 #6
avatar
0

4) 1^81.2^91.6^27 =2.5340394e+48 mod 7 =5

 Aug 2, 2016

1 Online Users