1. Let a≡1(mod4). Find the value of 6a + 5 (mod 4). Express your answer as a residue between 0 and the modulus.
2. We are given that a≠4 and that a2≡42(mod10). Find the value of a. Express your answer as a residue between 0 and the modulus.
3. Let a≠0 and a2≡0(mod12). What is the value of a? Express your answer as a residue between 0 and the modulus.
4. Given a≡1(mod7),b≡2(mod7) , and c≡6(mod7), what is the remainder when a81b91c27 is divided by 7?
1. Let a≡1(mod4)
Find the value of 6a + 5 (mod 4). Express your answer as a residue between 0 and the modulus.
6a + 5 (mod 4)
=(6*1 + 5) (mod 4)
=11(mod4)
11/4=2R3 or 3R-1
= 3 or -1 (mod4)
4. Given
a≡1(mod7),
b≡2(mod7),
and
c≡6(mod7),
what is the remainder when
a81b91c27
is divided by 7?
a−1=7lora=7l+1b−2=7morb=7m+2c−6=7norc=7n+6
a81b91c27(mod7)≡(7l+1)81⋅(7m+2)91⋅(7n+6)27(mod7)≡[(810)(7l)81+(811)(7l)80+⋯+(8181)181]⋅[(910)(7m)91+(911)(7m)90+⋯+(9191)291]⋅[(270)(7n)27+(271)(7n)26+⋯+(2727)627](mod7)≡(8181)181⋅(9191)291⋅(2727)627(mod7)≡181⋅291⋅627(mod7)≡1⋅291⋅627(mod7)≡291⋅627(mod7)
Because gcd(2,7)=1⇒2φ(7)≡1(mod7)φ(7)=626≡1(mod7)Because gcd(6,7)=1⇒6φ(7)≡1(mod7)φ(7)=666≡1(mod7)
a81b91c27(mod7)≡291⋅627(mod7)≡26⋅15+1⋅66⋅4+3(mod7)≡26⋅15⋅2⋅66⋅4⋅63(mod7)≡(26)15⋅2⋅(66)4⋅63(mod7)26≡1(mod7)≡(1)15⋅2⋅(66)4⋅63(mod7)66≡1(mod7)≡(1)15⋅2⋅(1)4⋅63(mod7)≡1⋅2⋅1⋅63(mod7)≡2⋅63(mod7)≡2⋅216(mod7)≡432(mod7)≡5(mod7)
The remainder is 5
4) \;\;Given\;\; a \equiv 1 \pmod{7},\;\;and\;\; b \equiv 2 \pmod{7} \'\'and\;\; c \equiv 6 \pmod{7} \mbox { what is the remainder when } a^{81} b^{91} c^{27} \mbox{is divided by 7}\?
4)Givena≡1(mod7),andb≡2(mod7)andc≡6(mod7) what is the remainder when a81b91c27is divided by 7?
Thanks Heureka,
I have just finsihed Q4 too and I think our answers are fairly similar but I would like to post mine anyway :)
a=7p+1
b=7q+2
c=7r+6
p,q,r are integers
a81=(7p+1)81=181+81∗(7p)1+81C2∗(7p)2.........+(7p)81
The only term here that is NOT a multiple of 7 is 1 and 1mod7=1
Using the same logic
(7q+2)91(mod7)=291(mod7)=210∗9+1(mod7)=(210)9∗2(mod7)=(1024)9∗2(mod7)=(2)9∗2(mod7)=1∗2(mod7)=2(mod7)
and
(7r+6)27(mod7)=627(mod7)=((63)3)3(mod7)=(2163)3(mod7)=(6)3(mod7)=6(mod7)
so
a81b91c27(mod7)=1∗2∗6(mod7)=12(mod(7)=5(mod7)
The remainder will be 5 Just like Heureka aready told us :)