(cot^2B-cos^2B)/csc^2B-1=cos^2B
I think this should be written as (cot2B - cos2B)/(csc2B - 1)
\frac{\cot^2B-\cos^2B}{\csc^2B-1}=\frac{\frac{\cos^2B}{\sin^2B}-\cos^2B}{\frac{1}{sin^2B}-1}=\frac{\cos^2B-\sin^2B\cos^2B}{1-\sin^2B}=\frac{\cos^2B(1-\sin^2B)}{1-\sin^2B}=\cos^2B$$