Processing math: 100%
 
+0  
 
0
1876
6
avatar+389 

Simplify (1+3+5+...+199)/(2+4+6+...+200).

 Aug 6, 2016

Best Answer 

 #5
avatar+9675 
+5

Multiply 100 to both the numerator and denominator.

 

11.01=100101

 Aug 7, 2016
 #1
avatar+130466 
0

1 + 3 + 5 + ..... + 199   can be expressed as the sum n^2  for n terms

 

The number of terms in this sum =  [ 1 + 199] / 2  = 200 / 2 = 100

 

So

 

1 + 3 + 5 + ....+199  = n^2 =  100^2  

 

And

 

 2 + 4 + 6 + ....+ 200    can be expressed  as the sum   n(n +1) for n terms

 

The number of terms in this sum  is the same as the first  = 100

 

So .... 2 + 4 + 6 + ....+ 200  =  n (n + 1)  = 100(101)  

 

So  

 

[1 + 3 + 5 + ....+199 ] / [ 2 + 4 + 6 + ....+ 200]  =  [ 100^2] / [ 100 * 101]  =

[100 * 100] / [ 100 * 101] =  1 / 101

 

 

cool cool cool

 Aug 6, 2016
 #2
avatar
0

CPhill: How do you get: [100 * 100] / [ 100 * 101] =  1 / 101?

It should be: 1/1.01. No??!!.

 Aug 6, 2016
 #3
avatar+130466 
+5

Sorry for the slight error....of course the answer should be  100/101 = 1/1.01  = 0.9900990099009901

 

 

cool cool cool

 Aug 6, 2016
 #4
avatar+389 
+5

What if it doesn't accept answers mixing fractions and decimals?

Dabae  Aug 6, 2016
 #5
avatar+9675 
+5
Best Answer

Multiply 100 to both the numerator and denominator.

 

11.01=100101

MaxWong  Aug 7, 2016
 #6
avatar+26396 
+5

Simplify (1+3+5+...+199)/(2+4+6+...+200).

 

sn=(a1+an)2n

 

1+3+5+...+1992+4+6+...+200=(a1+an)2n(b1+bn)2n=a1+anb1+bn=1+1992+200=200202=100101=0.99009900990

 

laugh

 Aug 8, 2016

1 Online Users