Simplify the following:
sqrt(75/2)-sqrt(3/2)
sqrt(3/2) = (sqrt(3))/(sqrt(2)):
sqrt(75/2)-(sqrt(3))/(sqrt(2))
Rationalize the denominator. (sqrt(3))/(sqrt(2)) = (sqrt(3))/(sqrt(2))×(sqrt(2))/(sqrt(2)) = (sqrt(3) sqrt(2))/(2):
sqrt(75/2)-(sqrt(3) sqrt(2))/(2)
sqrt(3) sqrt(2) = sqrt(3×2):
sqrt(75/2)-(sqrt(3×2))/(2)
3×2 = 6:
sqrt(75/2)-( sqrt(6 ) )/(2)
sqrt(75/2) = (sqrt(75))/(sqrt(2)):
(sqrt(75))/(sqrt(2))-(sqrt(6))/(2)
sqrt(75) = sqrt(3×5^2) = 5 sqrt(3):
(5 sqrt(3))/(sqrt(2))-(sqrt(6))/(2)
Rationalize the denominator. (5 sqrt(3))/(sqrt(2)) = (5 sqrt(3))/(sqrt(2))×(sqrt(2))/(sqrt(2)) = (5 sqrt(3) sqrt(2))/(2):
(5 sqrt(3) sqrt(2))/(2)-(sqrt(6))/(2)
sqrt(3) sqrt(2) = sqrt(3×2):
(5 sqrt(3×2))/(2)-(sqrt(6))/(2)
3×2 = 6:
(5 sqrt(6 ) )/(2)-(sqrt(6))/(2)
(5 sqrt(6))/(2)-(sqrt(6))/(2) = (5 sqrt(6)-sqrt(6))/(2):
(5 sqrt(6)-sqrt(6))/(2)
5 sqrt(6)-sqrt(6) = 4 sqrt(6):
(4 sqrt(6))/(2)
4/2 = (2×2)/2 = 2:
Answer: | 2 sqrt(6)