For the general quadratic equation a*x2 + b*x +c = 0 the solutions are given by:
x=−b±√b2−4ac2a
By rearranging 7x2 = 2x - 5 to 7x2 - 2x + 5 = 0 we have here that a=7, b=-2, c=5 so
x=2±√22−4∗7∗52∗7 which results in:
7×x2−2×x+5=0⇒{x=−(√34×i−1)7x=(√34×i+1)7}⇒{x=−(−17+0.8329931278349058i)x=17+0.8329931278349058i}
plug in the equation=7x² + 2x - 5
then take it step by step=
7x² + 7x - 5x - 5
7x (x + 1) - 5(x + 1)
(x + 1)(7x - 5)
5q^4 - 28q² - 12
5q^4 - 30q² + 2q² - 12
5q² (q² - 6) + 2(q² - 6)
(q² - 6)(5q² + 2)
2x² - x - 10
2x² + 4x - 5x - 10
2x (x + 2) - 5(x + 2)
(x + 2)(2x - 5)
-36x² - 3x + 60
-3 (12x² + x - 20)
-3 (12x² + 16x - 15x - 20)
-3 [4x(3x + 4) - 5(3x + 4)]
-3 (3x + 4) (4x - 5)
For the general quadratic equation a*x2 + b*x +c = 0 the solutions are given by:
x=−b±√b2−4ac2a
By rearranging 7x2 = 2x - 5 to 7x2 - 2x + 5 = 0 we have here that a=7, b=-2, c=5 so
x=2±√22−4∗7∗52∗7 which results in:
7×x2−2×x+5=0⇒{x=−(√34×i−1)7x=(√34×i+1)7}⇒{x=−(−17+0.8329931278349058i)x=17+0.8329931278349058i}