Loading [MathJax]/jax/output/SVG/config.js
 
+0  
 
0
647
2
avatar



Solve this equation for 0º≤θ≤360º.









 


A) 45º; 135º; 225º




 




 


B) 45º; 90º; 270º; 315º




 




 


C) 45º; 135º; 225º; 315º




 




 


D) 45º; 135º




 




 Oct 22, 2014

Best Answer 

 #2
avatar+130466 
+5

Notice that the only thing that can make this 0 is when the numerator on the left side = 0

So

cos 2Θ = 0

And the cosine is equal to 0 at 90, 270, 450 and 630 degrees......so dividing each by 2, we have

45, 135, 225 and 315  degrees.......(and notice that the sin ≠ 0 at any of these values, so the denominator of the fraction isn't 0 at any of these values, either !!!)

 

 Oct 22, 2014
 #1
avatar+23254 
+5

cos(2θ) / sin²(θ)  =  0

cos(2θ)  =  cos²(θ) - sin²(θ)

[cos²(θ) - sin²(θ)] / sin²(θ)  =  0                   Use the substitution.

cos²(θ) / sin²(θ) - sin²(θ) / sin²(θ)  =  0         Divide the numerator into two parts.

cos²(θ) / sin²(θ) - 1  =  0

cos²(θ) / sin²(θ)  =  1

sin²(θ) / cos²(θ)  =  1                                 Multiply both sides by sin²(θ) / cos²(θ) and exchange sides.

tan²(θ)  =  1

tan(θ)  =  1   --->  θ  = 45°  or 225°

tan(θ)  =  -1   --->  θ  = 135°  or 315°

 Oct 22, 2014
 #2
avatar+130466 
+5
Best Answer

Notice that the only thing that can make this 0 is when the numerator on the left side = 0

So

cos 2Θ = 0

And the cosine is equal to 0 at 90, 270, 450 and 630 degrees......so dividing each by 2, we have

45, 135, 225 and 315  degrees.......(and notice that the sin ≠ 0 at any of these values, so the denominator of the fraction isn't 0 at any of these values, either !!!)

 

CPhill Oct 22, 2014

1 Online Users